cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081352 Main diagonal of square maze arrangement of natural numbers A081349.

This page as a plain text file.
%I A081352 #44 Sep 08 2022 08:45:09
%S A081352 1,7,11,21,29,43,55,73,89,111,131,157,181,211,239,273,305,343,379,421,
%T A081352 461,507,551,601,649,703,755,813,869,931,991,1057,1121,1191,1259,1333,
%U A081352 1405,1483,1559,1641,1721,1807,1891,1981,2069,2163,2255,2353,2449,2551
%N A081352 Main diagonal of square maze arrangement of natural numbers A081349.
%C A081352 Conjecture: let a and b be integers such that 0 < a < b so that 0 < a/b is a proper fraction.  Define the map f(a,b,D) = a/b + gcd(a,b)/D. Of course, all such a/b can be partially ordered by value, i.e., 1/2 = 0.5 < 2/3 = 4/6 = 6/9 = 0.6666... < 3/4 = 6/8 = 0.75 < 4/5 = 0.8 etc. The map f appears to specify a total strict order on the co-domain for all a/b that is consistent with the given partial order of the domain, i.e., the partial order remains intact, while equivalent fractions are given a total strict order themselves. Moreover, equivalent fractions are strictly ordered by numerator (or denominator), e.g., 1/2 < 2/4 < 3/6 etc. The conditions are that for n >= 4 all of the fractions with denominator b <= n are listed and the minimum integer value of D to achieve the total strict order of the co-domain is 2*C(n-1,2) - (-1)^(n-1). So, a(n-3) = D for n >= 4. Example: given n = 4, we have D = 2*(4-1,2) - (-1)^(4-1) = 2*3 + 1 = 7 = a(4-3) = a(1). Partial order of domain. 1/4 < 1/3 < 1/2 = 2/4 < 2/3 < 3/4. Total order of co-domain. f(1,4,7) = 1/4 + 1/7 = 33/84 < f(1,3,7) = 1/3 + 1/7 = 40/84 < f(1,2,7) = 1/2 + 1/7 = 54/84 < f(2,4,7) = 2/4 + 2/7 = 66/84 < f(2,3,7) = 2/3 + 2/7 = 68/84 < f(3,4,7) = 3/4 + 1/7 = 75/84. Observe that if D = 6, then f(2,4,6) = 2/4 + 2/6 = 10/12 = f(2,3,6) = 2/3 + 1/6. Computation shows the same failure to achieve total strict order of the co-domain for D = 2..5. (As a >= 1, then b >=2, from the above). Computation also shows that the conjecture holds for n = 4..17. - _Ross La Haye_, Oct 02 2016
%H A081352 B. Berselli, <a href="/A081352/b081352.txt">Table of n, a(n) for n = 0..10000</a>
%H A081352 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F A081352 a(n) = (n + 1)*(n + 2) - (-1)^n = 2*C(n+2, 2) - (-1)^n.
%F A081352 G.f.: (1 +5*x -3*x^2 +x^3) / ((1+x)*(1-x)^3). [_Bruno Berselli_, Aug 01 2010]
%F A081352 a(n) -2*a(n-1) +2*a(n-3) -a(n-4) = 0 with n>3. [_Bruno Berselli_, Aug 01 2010]
%F A081352 a(n) = 3*A000982(n + 2) - A000982(n + 3). - _Miko Labalan_, Mar 26 2016
%F A081352 a(n) = A116940(n) + A236283(n + 1). - _Miko Labalan_, Dec 04 2016
%F A081352 a(n) = (2*n^2 + 6*n - 2*(-1)^n + (-1)^(2*n) + 3)/2. - _Kritsada Moomuang_, Oct 24 2019
%p A081352 A081352:=n->(n + 1)*(n + 2) - (-1)^n; seq(A081352(n), n=0..50); # _Wesley Ivan Hurt_, Feb 26 2014
%t A081352 CoefficientList[Series[(1 + 5 x - 3 x^2 + x^3) / ((1 + x) (1 - x)^3), {x, 0, 60}], x] (* _Vincenzo Librandi_, Aug 08 2013 *)
%o A081352 (Magma) I:=[1,7,11,21]; [n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Aug 08 2013
%o A081352 (PARI) x='x+O('x^99); Vec((1+5*x-3*x^2+x^3)/((1+x)*(1-x)^3)) \\ _Altug Alkan_, Mar 26 2016
%Y A081352 Cf. A081350, A081351, A054569.
%K A081352 nonn,easy
%O A081352 0,2
%A A081352 _Paul Barry_, Mar 19 2003