cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081357 Sublime numbers, numbers for which the number of divisors and the sum of the divisors are both perfect.

This page as a plain text file.
%I A081357 #38 Mar 06 2025 11:04:19
%S A081357 12,
%T A081357 6086555670238378989670371734243169622657830773351885970528324860512791691264
%N A081357 Sublime numbers, numbers for which the number of divisors and the sum of the divisors are both perfect.
%C A081357 The concept was introduced and the term "sublime numbers" was coined by Kevin Brown. a(1) was found by Brown (1995) and a(2) by Hickerson (1995). - _Amiram Eldar_, Jun 26 2021
%C A081357 a(2) = 2^126 * M(3) * M(5) * M(7) * M(19) * M(31) * M(61), where M(n) = 2^n - 1. - _Lucas A. Brown_, Mar 05 2025
%C A081357 It is known that all sublime numbers must be of that form, with all odd prime factors being Mersenne primes M(p). - _M. F. Hasler_, Mar 05 2025
%D A081357 David J. Darling, The universal book of mathematics: from Abracadabra to Zeno's paradoxes, Hoboken, N.J.: Wiley, 2004, p. 307.
%D A081357 Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, pp. 4 and 395.
%D A081357 Roozbeh Hazrat, Mathematica®: A Problem-Centered Approach, Springer, 2016, exercise 5.5, p. 102.
%D A081357 Clifford A. Pickover, Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning, Oxford University Press, 2001, p. 215.
%D A081357 József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 22.
%D A081357 Simon Singh, The Simpsons and Their Mathematical Secrets, A&C Black, 2013, p. 98.
%H A081357 Kevin S. Brown, <a href="https://groups.google.com/g/sci.math/c/i_Kk9n0Nsl4/m/5dI7uEpXuEUJ">Twelve is special</a>, posting to sci.math newsgroup, Mar 20 1995.
%H A081357 Kevin S. Brown, <a href="https://groups.google.com/g/sci.math/c/TvXa5IdKf4Q/m/i6hvWgxw5UsJ">Odd Sublime Numbers?</a>, posting to sci.math newsgroup, Mar 26 1995.
%H A081357 Kevin S. Brown, <a href="http://www.mathpages.com/home/kmath202/kmath202.htm">Sublime Numbers</a>.
%H A081357 Jonny Griffiths, Lopsided numbers, Mathematical Spectrum, Vol. 43, No. 2 (2010/2011), pp. 53-54; <a href="http://www.appliedprobability.org/data/files/MS%20issues/Vol43_No2.pdf">entire issue</a>.
%H A081357 Michael Joseph Halm, <a href="https://michaelhalm.tripod.com/id171.htm">More Sequences</a>, Mpossibilities, Issue 83, April 2003.
%H A081357 Dean Hickerson, <a href="https://groups.google.com/g/sci.math/c/i_Kk9n0Nsl4/m/UHJTt-P7ePUJ">Re: Twelve is special</a>, posting to sci.math newsgroup, Mar 23 1995.
%H A081357 Pallavi Pathak and Jawahar Pathak, <a href="https://web.archive.org/web/20200714113410/http://mathematicstoday.org/archives/V32_2016_5.pdf">An algorithm to construct Sublime Numbers</a>, Mathematics Today, Vol. 32 (2016), pp. 41-46.
%H A081357 Clifford A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," <a href="http://www.zentralblatt-math.org/zbmath/search/?q=an%3A0983.00008">Zentralblatt review</a>.
%H A081357 Gérard Villemin, <a href="http://villemin.gerard.free.fr/Wwwgvmm/Decompos/Sublime.htm">Nombre sublime</a>. (French)
%H A081357 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SublimeNumber.html">Sublime Number</a>.
%H A081357 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sublime_number">Sublime number</a>.
%e A081357 a(1) = 12 because 12 + 6 + 4 + 3 + 2 + 1 = 28 is perfect and number of divisors, 6, is also perfect.
%Y A081357 Cf. A000005, A000203, A000396.
%K A081357 hard,nonn,bref,more
%O A081357 1,1
%A A081357 _Michael Joseph Halm_, Apr 20 2003