This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081358 #44 Mar 17 2018 04:13:20 %S A081358 0,1,2,8,32,184,1104,8448,67584,648576,6485760,74972160,899665920, %T A081358 12174658560,170445219840,2643856588800,42301705420800, %U A081358 740051782041600,13320932076748800,259500083163955200,5190001663279104000,111422936937037824000,2451304612614832128000 %N A081358 E.g.f.: log((1+x) / (1-x)) / (2*(1-x)). %C A081358 Number of cycles of odd cardinality in all permutations of [n]. Example: a(3)=8 because among (1)(2)(3), (1)(23), (12)(3), (13)(2), (132), (123) we have eight cycles of odd length. - _Emeric Deutsch_, Aug 12 2004 %C A081358 a(n) is a function of the harmonic numbers. a(n) = n!*h(n) - n!/2 * h(floor(n/2)), where h(n) = Sum_{k=1..n} 1/k. - _Gary Detlefs_, Aug 06 2010 %D A081358 I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, Exercise 3.3.13 %H A081358 N. J. A. Sloane, <a href="/A081358/b081358.txt">Table of n, a(n) for n = 0..30</a> %H A081358 B. A. Kuperschmidt, <a href="http://www.sm.luth.se/~norbert/home_journal/electronic/72brev3.ps">... And free lunch for all.</a> %H A081358 B. A. Kuperschmidt, Journal of Nonlinear Mathematical Physics 2000 v. 7 no. 2, <a href="http://arXiv.org/abs/math.HO/0004188">A Review of Bruce C. Berndt's Ramanujan's Notebooks parts I-V</a> %F A081358 E.g.f.: log((1+x) / (1-x)) / (2*(1-x)). %F A081358 a(n) = n! * Sum_{k=0..n, k odd} 1/k. %F A081358 a(n) = n!/2*(Psi(ceiling(n/2)+1/2)+gamma+2*log(2)). - _Vladeta Jovovic_, Oct 20 2003 %F A081358 a(n) = n!*Sum_{k=1..n} (-1)^(k+1)*2^(k-1)*binomial(n, k)/k. - _Vladeta Jovovic_, Aug 12 2005 %F A081358 a(n) = n*a(n-1) + ((-1)^(n+1)+1)/2*(n-1)!. - _Gary Detlefs_, Aug 06 2010 %F A081358 a(n) = A000254(n) - A092691(n). - _Gary Detlefs_, Aug 06 2010 %F A081358 a(n) ~ n!/2 * (log(n) + gamma + log(2)), where gamma is the Euler-Mascheroni constant (A001620). - _Vaclav Kotesovec_, Oct 05 2013 %F A081358 a(2*n + 1) = A049034(n). %F A081358 E.g.f.: arctanh(x)/(1 - x). - _Ilya Gutkovskiy_, Dec 19 2017 %e A081358 G.f. = x + 2*x^2 + 8*x^3 + 32*x^4 + 184*x^5 + 1104*x^6 + 8448*x^7 + ... %t A081358 nn = 20; Range[0, nn]! CoefficientList[ %t A081358 D[Series[(1 - x^2)^(-1/2) ((1 + x)/(1 - x))^(y/2), {x, 0, nn}], y] /. y -> 1, x] (* _Geoffrey Critzer_, Aug 27 2012 *) %t A081358 a[ n_] := If[ n < 0, 0, n! Sum[ 1/k, {k, 1, n, 2}]]; (* _Michael Somos_, Jan 06 2015 *) %t A081358 a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Log[ (1 + x) / (1 - x)] / (2 (1 - x)), {x, 0, n}]]; (* _Michael Somos_, Jan 06 2015 *) %o A081358 (PARI) {a(n) = if( n<1, 0, n! * polcoeff( log(1 + 2 / (-1 + 1 / (x + x * O(x^n)))) / (2 * (1-x)), n))}; %o A081358 (PARI) {a(n) = if( n<0, 0, n! * sum(k=1, n, (k%2)/k))}; /* _Michael Somos_, Sep 19 2006 */ %o A081358 (PARI) first(n) = x='x+O('x^n); Vec(serlaplace(atanh(x)/(1 - x)), -n) \\ _Iain Fox_, Dec 19 2017 %Y A081358 Cf. A000254, A001640, A049034, A092691, A151884. %K A081358 nonn %O A081358 0,3 %A A081358 _Michael Somos_, Mar 18 2003