This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081367 #41 Jan 30 2020 21:29:15 %S A081367 1,3,11,53,345,2947,31411,400437,5927921,99816515,1882741659, %T A081367 39310397557,899919305929,22410922177347,603120939234755, %U A081367 17441737474345973,539390080299331809,17762381612118471043 %N A081367 E.g.f.: exp(2*x)/sqrt(1-2*x). %H A081367 Vincenzo Librandi, <a href="/A081367/b081367.txt">Table of n, a(n) for n = 0..99</a> %F A081367 a(n) = Sum_{k = 0..n} A046716(n, k)*2^k. - _Philippe Deléham_, Jun 12 2004 %F A081367 a(n) = U(1/2,3/2+n,1)*2^n, where U is the confluent hypergeometric Kummer function U. - _John M. Campbell_, May 04 2011 %F A081367 D-finite with recurrence: a(n) = (2*n+1)*a(n-1) - 4*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 13 2012 %F A081367 a(n) ~ 2^(n+1/2)*n^n/exp(n-1). - _Vaclav Kotesovec_, Oct 13 2012 %F A081367 G.f.: W(0)/(1-2*x), where W(k) = 1 - x*(k+1)/(x*(k+1) - (1-2*x)/W(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Nov 03 2014 %F A081367 From _Robert Israel_, Nov 04 2014: (Start) %F A081367 a(n) = 2^n * hypergeom([1/2,-n],[],-1). %F A081367 G.f. satisfies (1-3*x+4*x^2)*g(x) + (-2*x^2+4*x^3)*g'(x) = 1. (End) %p A081367 F:= gfun:-rectoproc({a(n) = (2*n+1)*a(n-1) - 4*(n-1)*a(n-2), a(0)=1,a(1)=3},a(n),remember): %p A081367 seq(F(n),n=0..30); # _Robert Israel_, Nov 04 2014 %t A081367 Table[HypergeometricU[1/2, 3/2 + n, 1]*2^n, {n, 0, 20}] %t A081367 With[{nn=20},CoefficientList[Series[Exp[2x]/Sqrt[1-2x],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Mar 20 2015 *) %o A081367 (PARI) a(n)=n!*polcoeff(exp(2*x)/sqrt(1-2*x)+O(x^(n+1)),n) %K A081367 nonn %O A081367 0,2 %A A081367 _Benoit Cloitre_, May 10 2003