A081381 Numbers n such that n and tau(n) = A000005(n) have the same prime factors (ignoring multiplicity).
1, 2, 8, 9, 12, 18, 72, 80, 96, 108, 128, 288, 448, 486, 625, 720, 768, 864, 972, 1152, 1200, 1250, 1620, 1944, 2000, 2025, 2560, 4032, 4050, 5000, 5625, 6144, 6561, 6912, 7500, 7776, 8748, 9408, 10800, 11250, 11264, 12960, 13122, 16200, 18000, 18432, 19440
Offset: 1
Keywords
Examples
n = 5000 = 2*2*2*5*5*5*5, tau(5000) = 20 = 2*2*5, common prime factors: {2,5}
Links
- Donovan Johnson and Giovanni Resta, Table of n, a(n) for n = 1..1096 (terms < 10^11, first 500 terms from Donovan Johnson)
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Do[s=ba[DivisorSigma[0, n]]; If[Equal[s, ba[n]], Print[n]], {n, 1, 10000}]
-
PARI
is(n)=my(f=factor(n)); factor(numdiv(f))[,1]==f[,1] \\ Charles R Greathouse IV, Oct 19 2017