cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081387 Number of non-unitary prime divisors of central binomial coefficient, C(2n,n) = A000984(n), i.e., number of prime factors in C(2n,n) whose exponent is greater than one.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 2, 2, 2, 1, 1, 3, 3, 3, 3, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 4, 3, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 2, 4, 2, 2, 3, 3, 3, 3, 4, 4, 5, 4, 4, 2, 3, 3, 2, 2, 2, 4, 3, 3, 4, 3, 4, 5, 4, 2, 2, 2, 3, 5, 5, 5, 5, 3, 2, 3, 2, 3, 3, 3
Offset: 1

Views

Author

Labos Elemer, Mar 27 2003

Keywords

Examples

			For n = 14: binomial(28,14) = 40116600 = 2*2*2*3*3*3*5*5*17*19*23; unitary prime divisors: {17,19,23}; non-unitary prime divisors: {2,3,5}, so a(14) = 3.
		

Crossrefs

Programs

Formula

a(n) = A056170(A000984(n)) = A001221(A000984(n)) - A081386(n) = A067434(n) - A081386(n).