This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081411 #14 Nov 19 2020 04:37:39 %S A081411 1,2,4,16,32,128,256,1024,6144,12288,73728,294912,589824,2359296, %T A081411 14155776,84934656,169869312,1019215872,4076863488,8153726976, %U A081411 48922361856,195689447424,1174136684544,9393093476352,37572373905408,75144747810816,300578991243264,601157982486528 %N A081411 Partial product of prime gaps: a(n) = a(n-1)*(prime(n+1) - prime(n)). %C A081411 Original name was: Generated by recursion: a(n)=(Mod[Prime[n+1],Prime[n]]*n[n-1]; a[0]=1; Product of the first n consecutive prime-differences. %H A081411 Amiram Eldar, <a href="/A081411/b081411.txt">Table of n, a(n) for n = 1..1244</a> %F A081411 Sum_{n>=1} 1/a(n) = A099002. - _Amiram Eldar_, Nov 19 2020 %t A081411 a[1] = 1; a[n_] := a[n] = a[n - 1] * (Prime[n + 1] - Prime[n]); Array[a, 30] (* _Amiram Eldar_, Nov 19 2020 *) %o A081411 (PARI) diff(v)=vector(#v-1,i,v[i+1]-v[i]) %o A081411 pprod(v)=my(t=1); vector(#v,i,t*=v[i]) %o A081411 pprod(diff(primes(50))) \\ _Charles R Greathouse IV_, Mar 27 2014 %Y A081411 Cf. A001223, A080374, A080375, A080376, A099002. %K A081411 nonn %O A081411 1,2 %A A081411 _Labos Elemer_, Apr 01 2003 %E A081411 New name from _Charles R Greathouse IV_, Mar 27 2014 %E A081411 More terms from _Amiram Eldar_, Nov 19 2020