This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081442 #26 Sep 08 2022 08:45:09 %S A081442 1,1,13,421,25369,2449801,346065061,67243537453,17192488230961, %T A081442 5593309059948049,2255588021494237501,1103994926592923677621, %U A081442 644587811150505183179593,442516027690815793746696601 %N A081442 Expansion of e.g.f.: cosh(x/sqrt(1-x^2)) (even powers). %C A081442 Periodic zeros suppressed. %H A081442 G. C. Greubel, <a href="/A081442/b081442.txt">Table of n, a(n) for n = 0..220</a> %F A081442 a(n) = (2*n)!*Sum_{j=0..n} binomial(n-1,n-j)/(2*j)!. - _Vladimir Kruchinin_, May 19 2011 %F A081442 E.g.f.: cosh(x/sqrt(1-x^2)) = 1 + x^2/(G(0)-x^2) where G(k)= 2*(2*k+1)*(k+1)*(1-x^2) + x^2 - 2*(2*k+1)*(k+1)*x^2*(1-x^2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - _Sergei N. Gladkovskii_, Aug 06 2012 %F A081442 D-finite with recurrence: a(n) = (12*n^2 - 24*n + 13)*a(n-1) - 12*(n-2)*(n-1)*(2*n-3)^2*a(n-2) + 16*(n-3)*(n-2)^2*(n-1)*(2*n-5)*(2*n-3)*a(n-3). - _Vaclav Kotesovec_, Oct 29 2014 %F A081442 a(n) ~ 2^(2*n - 1/3) * n^(2*n - 1/3) * exp(3 * 2^(-2/3) * n^(1/3) - 2*n) / sqrt(3) * (1 - 19/72*2^(2/3)/n^(1/3) + 553/5184*2^(1/3)/n^(2/3)). - _Vaclav Kotesovec_, Oct 29 2014 %e A081442 cosh(x/sqrt(1-x^2)) = 1 + 1/2*x^2 + 13/24*x^4 + 421/720*x^6 + ... %p A081442 seq(coeff(series(cosh(x/sqrt(1-x^2)), x, 2*n+1)*factorial(2*n), x, 2*n), n = 0 .. 20); # _G. C. Greubel_, Aug 14 2019 %t A081442 Table[(CoefficientList[Series[Cosh[x/Sqrt[1-x^2]], {x, 0, 40}], x] * Range[0, 40]!)[[n]], {n,1,41,2}] (* _Vaclav Kotesovec_, Oct 29 2014 *) %o A081442 (Maxima) a(n):=(2*n)!*sum(binomial(n-1,n-j)/(2*j)!,j,0,n); /* _Vladimir Kruchinin_, May 19 2011 */ %o A081442 (PARI) my(x='x+O('x^40)); v=Vec(serlaplace( cosh(x/sqrt(1-x^2)) )); vector(#v\2, n, v[2*n-1]) \\ _G. C. Greubel_, Aug 14 2019 %o A081442 (Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Cosh(x/Sqrt(1-x^2)) )); [Factorial(2*n-2)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // _G. C. Greubel_, Aug 14 2019 %o A081442 (Sage) [factorial(2*n)*( cosh(x/sqrt(1-x^2)) ).series(x, 2*n+1).list()[2*n] for n in (0..20)] # _G. C. Greubel_, Aug 14 2019 %Y A081442 Cf. A081439, A081440. %K A081442 easy,nonn %O A081442 0,3 %A A081442 _Paul Barry_, Mar 21 2003 %E A081442 Definition corrected by _Joerg Arndt_, May 19 2011