This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081474 #12 Mar 09 2022 08:24:44 %S A081474 0,1,5,49,529,7471,112825,2078455,42649281,997784221,25875851825, %T A081474 742641202183,23283999690561,793616663524231,29188521870580929, %U A081474 1152885848976064513,48659336030073207425,2185894865613157551481,104126348669497256201905,5242869988601103651841105 %N A081474 Number of distinct lines through the origin in n-dimensional cube of side length n. %C A081474 Equivalently, lattice points where the GCD of all coordinates = 1. %H A081474 Alois P. Heinz, <a href="/A081474/b081474.txt">Table of n, a(n) for n = 0..386</a> %F A081474 a(n) = A090030(n,n). %e A081474 a(3) = 49 because in the 3-dimensional lattice of side length 3, the lines through the origin are determined by all 37 points with at least one coordinate = 3 and 6 permutations of (2,1,0) and 3 permutations each of (2,1,1) and (2,2,1). %p A081474 a:= n-> add(numtheory[mobius](i)*((floor(n/i)+1)^n-1), i=1..n): %p A081474 seq(a(n), n=0..20); # _Alois P. Heinz_, Mar 09 2022 %t A081474 aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]];lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1;Table[lines[k, k], {k, 0, 20}] %Y A081474 Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions. A090030 is the table for n dimensions, side length k. %K A081474 nonn %O A081474 0,3 %A A081474 _Joshua Zucker_, Nov 25 2003