A081477 Complement of A086377.
2, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 73, 75, 77, 79, 80, 82, 84, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 102, 104, 106, 108, 109, 111, 113, 114, 116, 118
Offset: 1
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
- Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), arXiv 1710.01498 math.NT (2018).
- Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A4.
Programs
-
Mathematica
t = Nest[Flatten[# /. {0->{0,1,1}, 1->{0,1}}] &, {0}, 5] (*A189687*) f[n_] := t[[n]] Flatten[Position[t, 0]] (* A086377 conjectured *) Flatten[Position[t, 1]] (* A081477 conjectured *) s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0; Table[s[n], {n, 1, 120}] (*A189688*) (* Clark Kimberling, Apr 25 2011 *)
Formula
Conjectures from Clark Kimberling, Aug 03 2022: (Start)
[a(n)*r] = n + [n*r] for n >= 1, where r = sqrt(2) and [ ] = floor.
Extensions
Name corrected by Michel Dekking, Jan 04 2019
Comments