This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081496 #14 Mar 04 2022 13:05:42 %S A081496 5,14,46,160,574,2100,7788,29172,110110,418132,1595620,6113744, %T A081496 23505356,90633800,350351640,1357278300,5268292830,20483876820, %U A081496 79765662900,311038321440,1214362277700,4746455801880,18570960418920,72728638093800 %N A081496 Start with Pascal's triangle; a(n) is the sum of the numbers on the periphery of the n-th central rhombus containing exactly 4 numbers. %H A081496 Qi Wang, <a href="https://arxiv.org/abs/1910.01937">Tau-tilting finite simply connected algebras</a>, arXiv:1910.01937 [math.RT], 2019. See Example 5.1 and table page 17. %F A081496 a(n) = (9*n-4)*Catalan(n-1) = (9*n-4)*binomial(2*(n-1), (n-1))/n. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004 %F A081496 a(n) = Sum_{k=0..n} A029635(n,k)^2 for n>=1, where A029635 is the Lucas triangle. - _Paul D. Hanna_, Oct 17 2017 %e A081496 The first three rhombuses are %e A081496 ...1...........2.........6 %e A081496 .1...1.......3...3.....10..10 %e A081496 ...2......,....6.....,...20 %e A081496 and the corresponding sums are a(1) =5, a(2) =14 and a(3) =46. %p A081496 seq((9*n-4)*binomial(2*(n-1),(n-1))/n,n=1..26); # C. Ronaldo, Dec 20 2004 %o A081496 (PARI) { A029635(n, k) = if( k<0 || k>n, 0, (n==0) + binomial(n, k) + binomial(n-1, k-1))}; \\ program from Michael Somos in A029635 %o A081496 {a(n) = sum(k=0,n,A029635(n, k)^2)} \\ _Paul D. Hanna_, Oct 17 2017 %o A081496 for(n=1,30,print1(a(n),", ")) %Y A081496 Cf. A081494, A081495, A081497, A029635. %K A081496 nonn %O A081496 1,1 %A A081496 _Amarnath Murthy_, Mar 25 2003 %E A081496 More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004