This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081498 #49 Sep 08 2022 08:45:09 %S A081498 1,3,5,6,5,1,-7,-20,-39,-65,-99,-142,-195,-259,-335,-424,-527,-645, %T A081498 -779,-930,-1099,-1287,-1495,-1724,-1975,-2249,-2547,-2870,-3219, %U A081498 -3595,-3999,-4432,-4895,-5389,-5915,-6474,-7067,-7695,-8359,-9060,-9799,-10577,-11395,-12254,-13155,-14099,-15087,-16120 %N A081498 Consider the triangle in which the n-th row starts with n, contains n terms and the difference of successive terms is 1,2,3,... up to n-1. Sequence gives row sums. %C A081498 The triangle whose row sums are being considered is: %C A081498 1; %C A081498 2, 1; %C A081498 3, 2, 0; %C A081498 4, 3, 1, -2; %C A081498 5, 4, 2, -1, -5; %C A081498 6, 5, 3, 0, -4, -9; %C A081498 7, 6, 4, 1, -3, -8, -14; %C A081498 The leading diagonal is given by A080956(n-1) = n*(3-n)/2. %H A081498 Robert Israel, <a href="/A081498/b081498.txt">Table of n, a(n) for n = 1..10000</a> %H A081498 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A081498 a(n) = n^2 - binomial(n+1, n-2). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004 %F A081498 a(n) = binomial(n,2)+binomial(n,1)-binomial(n,3). - _Zerinvary Lajos_, Jul 23 2006 %F A081498 a(n) = n*(1+6*n-n^2)/6. - _Karen A. Yeats_, Nov 20 2006 %F A081498 From _Michael Somos_, Jul 04 2012: (Start) %F A081498 G.f.: x * (1 - x - x^2) / (1 - x)^4. %F A081498 a(-1 - n) = A008778(n). (End) %F A081498 E.g.f.: x*(6 +3*x -x^2)*exp(x)/6. - _G. C. Greubel_, Mar 06 2019 %e A081498 G.f. = x * (1 + 3*x + 5*x^2 + 6*x^3 + 5*x^4 + x^5 - 7*x^6 - 20*x^7 - 39*x^8 - 65*x^9 + ...). %p A081498 seq(n^2-binomial(n+1,n-2),n=1..50); # C. Ronaldo %p A081498 [seq(binomial(n,2)+binomial(n,1)-binomial(n,3), n=1..49)]; # _Zerinvary Lajos_, Jul 23 2006 %t A081498 LinearRecurrence[{4,-6,4,-1}, {1,3,5,6}, 50] (* _G. C. Greubel_, Mar 06 2019 *) %o A081498 (PARI) {a(n) = if( n< 0, n = -2 - n; polcoeff( (1 + x - x^2) / (1 - x)^4 + x * O(x^n), n), polcoeff( (1 - x - x^2) / (1 - x)^4 + x * O(x^n), n))} /* _Michael Somos_, Jul 04 2012 */ %o A081498 (PARI) vector(50, n, n*(1+6*n-n^2)/6) \\ _G. C. Greubel_, Mar 06 2019 %o A081498 (GAP) List([1..50],n->n^2-Binomial(n+1,n-2)); # _Muniru A Asiru_, Mar 05 2019 %o A081498 (Magma) [n*(1+6*n-n^2)/6: n in [1..50]]; // _G. C. Greubel_, Mar 06 2019 %o A081498 (Sage) [n*(1+6*n-n^2)/6 for n in (1..50)] # _G. C. Greubel_, Mar 06 2019 %Y A081498 Cf. A008778, A080956, A081499. %K A081498 sign,easy %O A081498 1,2 %A A081498 _Amarnath Murthy_, Mar 25 2003 %E A081498 More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004 %E A081498 Offset changed to 1 at the suggestion of _Michel Marcus_, Mar 05 2019 %E A081498 Formulas and programs addapted for offset 1 by _Michel Marcus_, Mar 05 2019