cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081499 Sum at 45 degrees to horizontal in triangle of A081498.

This page as a plain text file.
%I A081499 #23 Jan 17 2022 14:32:19
%S A081499 1,2,4,6,8,11,12,16,15,20,16,22,14,21,8,16,-3,6,-20,-10,-44,-33,-76,
%T A081499 -64,-117,-104,-168,-154,-230,-215,-304,-288,-391,-374,-492,-474,-608,
%U A081499 -589,-740,-720,-889,-868,-1056,-1034,-1242,-1219,-1448,-1424,-1675,-1650,-1924,-1898,-2196,-2169,-2492,-2464,-2813
%N A081499 Sum at 45 degrees to horizontal in triangle of A081498.
%C A081499 The leading diagonal is given by A080956(n) = ((n+1)(2-n)/2).
%H A081499 Colin Barker, <a href="/A081499/b081499.txt">Table of n, a(n) for n = 1..1000</a>
%H A081499 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F A081499 a(n) = (n+floor(n/2)+1)*(n-floor(n/2))/2-binomial(ceiling(n/2)+1, ceiling(n/2)-2). - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
%F A081499 G.f.: x*(1 + x - x^2 - x^3 - x^4) / ((1 - x)^4*(1 + x)^3). - _Colin Barker_, Dec 18 2012
%F A081499 From _Colin Barker_, Nov 12 2017: (Start)
%F A081499 a(n) = (1/96)*(-2*n^3 + 36*n^2 + 32*n) for n even.
%F A081499 a(n) = (1/96)*(-2*n^3 + 30*n^2 + 50*n + 18) for n odd.
%F A081499 a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7.
%F A081499 (End)
%e A081499 a(7) = 7+5+2+(-2) = 12.
%p A081499 seq((n+floor(n/2)+1)*(n-floor(n/2))/2-binomial(ceil(n/2)+1,ceil(n/2)-2),n=1..60); # C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004
%t A081499 LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,2,4,6,8,11,12},60] (* _Harvey P. Dale_, Jan 17 2022 *)
%o A081499 (PARI) Vec(x*(1 + x - x^2 - x^3 - x^4) / ((1 - x)^4*(1 + x)^3) + O(x^60)) \\ _Colin Barker_, Nov 12 2017
%Y A081499 Cf. A080956, A081498.
%K A081499 sign,easy
%O A081499 1,2
%A A081499 _Amarnath Murthy_, Mar 25 2003
%E A081499 More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 20 2004