This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081507 #42 Jul 31 2024 09:08:50 %S A081507 0,2,4,6,8,108,144,334,1422,4824,16502,19050,23262 %N A081507 Numbers k for which 2^k + 3^k + 4^k is prime. %C A081507 a(13) > 20838. - _J.W.L. (Jan) Eerland_, Dec 20 2021 %C A081507 a(14) > 100000. - _Michael S. Branicky_, Jul 31 2024 %e A081507 k=2: 2^2 + 3^2 + 4^2 = 4 + 9 + 16 = 29 (a prime). %t A081507 Do[s=2^w+3^w+4^w; If[IntegerQ[w/100], Print[{w}]]; If[PrimeQ[s], Print[{w, s}]], {w, 0, 1000}] %t A081507 Do[ If[ PrimeQ[2^w+3^w+4^w], Print[n]], {n, 0, 5000}] %t A081507 Select[Range[5000], PrimeQ[Plus@@({2,3,4}^#)]&] (* _Harvey P. Dale_, Jan 03 2011 *) %t A081507 DeleteCases[ParallelTable[If[PrimeQ[(2^n)+(3^n)+(4^n)],n,a],{n,0,19050}],a] (* _J.W.L. (Jan) Eerland_, Dec 20 2021 *) %o A081507 (PARI) isok(k) = isprime(2^k + 3^k + 4^k); \\ _Michel Marcus_, Sep 05 2017 %o A081507 (Magma) [n: n in [0..400] | IsPrime(2^n+3^n+4^n)]; // _Vincenzo Librandi_, Sep 05 2017 %Y A081507 Cf. A081506. %K A081507 nonn,more %O A081507 1,2 %A A081507 _Labos Elemer_, Apr 15 2003 %E A081507 a(9)-a(10) from _Robert G. Wilson v_, Jul 22 2005 %E A081507 a(11)-a(12) from _J.W.L. (Jan) Eerland_, Dec 20 2021 %E A081507 Offset corrected by _Jon E. Schoenfield_, Dec 20 2021 %E A081507 a(13) from _Michael S. Branicky_, Mar 31 2023