This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081517 #18 Dec 23 2024 01:52:35 %S A081517 1,1,2,1,2,4,1,2,3,5,1,2,3,4,7,1,2,3,4,5,8,1,2,3,4,5,6,8,1,2,3,4,5,6, %T A081517 7,9,1,2,3,4,5,6,7,8,11,1,2,3,4,5,6,7,8,9,14,1,2,3,4,5,6,7,8,9,10,12, %U A081517 1,2,3,4,5,6,7,8,9,10,11,13,1,2,3,4,5,6,7,8,9,10,11,12,19 %N A081517 Consider the smallest number m which can be expressed as the sum of n distinct numbers coprime to m. Sequence gives triangle (read by rows) of the set of coprime numbers pertaining to m. When there is a choice, use the lexicographically earliest solution. %C A081517 For n >= 2, it appears that m is the least prime >= n*(n+1)/2, and row n consists of %C A081517 1,2,3,...,n-1 and m - n*(n-1)/2. _Robert Israel_, Dec 22 2024 %H A081517 Robert Israel, <a href="/A081517/b081517.txt">Table of n, a(n) for n = 1..7260</a> (first 120 rows, flattened) %e A081517 Triangle begins: %e A081517 1; %e A081517 1,2; %e A081517 1,2,4; %e A081517 1,2,3,5; %e A081517 1,2,3,4,7; %e A081517 1,2,3,4,5,8; %p A081517 g:= proc(S,m,n) # lex-first sublist of sorted list S of size n with sum m, or FAIL %p A081517 option remember; %p A081517 local nS,i,v; %p A081517 nS:= nops(S); %p A081517 if nS < n or convert(S[1..n],`+`) > m or convert(S[-n .. -1],`+`) < m then return FAIL fi; %p A081517 if n = 0 then if m = 0 then return [] else return FAIL fi fi; %p A081517 for i from 1 to nS while S[i] <= m do %p A081517 v:= procname(S[i+1..-1],m-S[i],n-1); %p A081517 if v <> FAIL then return [S[i],op(v)] fi %p A081517 od; %p A081517 FAIL %p A081517 end proc: %p A081517 f:= proc(n) local m,v; %p A081517 for m from 1 do %p A081517 v:= g(select(t -> igcd(t,m) = 1, [$1..m]),m,n); %p A081517 if v <> FAIL then return op(v) fi %p A081517 od %p A081517 end proc: %p A081517 for n from 1 to 20 do f(n) od; # _Robert Israel_, Dec 22 2024 %o A081517 (PARI) row(n) = {my(m=n*(n-1)/2, v); for(k=m+n, oo, v=List([1]); for(i=2, k-m, if(gcd(k, i)==1, listput(v, i))); if(#v>=n, forsubset([#v, n], w, if(sum(i=1, n, v[w[i]])==k, return(vector(n, i, v[w[i]])))))); } \\ _Jinyuan Wang_, May 23 2020 %Y A081517 Cf. A081515, A081516. %K A081517 nonn,tabl %O A081517 1,3 %A A081517 _Amarnath Murthy_, Mar 27 2003 %E A081517 More terms from _R. J. Mathar_, Mar 23 2007 %E A081517 More terms from _Jinyuan Wang_, May 23 2020