This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081555 #16 Sep 08 2022 08:45:09 %S A081555 3,7,35,199,1155,6727,39203,228487,1331715,7761799,45239075,263672647, %T A081555 1536796803,8957108167,52205852195,304278004999,1773462177795, %U A081555 10336495061767,60245508192803,351136554095047,2046573816377475,11928306344169799,69523264248641315 %N A081555 a(n) = 6*a(n-1) - a(n-2) - 4, a(0)=3, a(1)=7. %C A081555 2*(a(2*n+1) + 1) is a perfect square. %H A081555 G. C. Greubel, <a href="/A081555/b081555.txt">Table of n, a(n) for n = 0..1000</a> %H A081555 <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a> %H A081555 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-7,1). %F A081555 a(n) = A051927(2n). %F A081555 a(n) = A003499(n) + 1. %F A081555 a(2n) + 1 = A003499(n)^2. %F A081555 a(n) = (3 + 2*sqrt(2))^n + (3 - 2*sqrt(2))^n + 1. %F A081555 G.f.: (3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)). %p A081555 seq(coeff(series((3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)), x, n+1), x, n), n = 0 ..30); # _G. C. Greubel_, Aug 13 2019 %t A081555 a[n_]:= a[n] = 6*a[n-1] -a[n-2] -4; a[0] = 3; a[1] = 7; Table[a[n], {n, 0, 25}] %t A081555 LinearRecurrence[{7,-7,1}, {3,7,35}, 30] (* _G. C. Greubel_, Aug 13 2019 *) %o A081555 (PARI) a(n)=1+2*real((3+quadgen(32))^n) %o A081555 (PARI) a(n)=1+2*subst(poltchebi(abs(n)),x,3) %o A081555 (PARI) a(n)=if(n<0,a(-n),1+polsym(1-6*x+x^2,n)[n+1]) %o A081555 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (3-14*x+7*x^2)/((1-x)*(1-6*x+x^2)) )); // _G. C. Greubel_, Aug 13 2019 %o A081555 (Sage) %o A081555 def A081555_list(prec): %o A081555 P.<x> = PowerSeriesRing(ZZ, prec) %o A081555 return P((3-14*x+7*x^2)/((1-x)*(1-6*x+x^2))).list() %o A081555 A081555_list(30) # _G. C. Greubel_, Aug 13 2019 %o A081555 (GAP) a:=[3,7];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]-4; od; a; # _G. C. Greubel_, Aug 13 2019 %Y A081555 Cf. A003499, A051927. %K A081555 easy,nonn %O A081555 0,1 %A A081555 Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003