cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081576 Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.

This page as a plain text file.
%I A081576 #13 Aug 23 2024 22:05:59
%S A081576 0,0,1,0,1,1,0,1,3,2,0,1,5,8,3,0,1,7,20,21,5,0,1,9,38,75,55,8,0,1,11,
%T A081576 62,189,275,144,13,0,1,13,92,387,905,1000,377,21,0,1,15,128,693,2305,
%U A081576 4256,3625,987,34,0,1,17,170,1131,4955,13392,19837,13125,2584,55
%N A081576 Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.
%C A081576 Array rows are solutions of the recurrence a(n) = (2*k+1)*a(n-1) - A028387(k-1)*a(n-2) where a(0) = 0 and a(1) = 1.
%H A081576 G. C. Greubel, <a href="/A081576/b081576.txt">Antidiagonal rows n = 0..50, flattened</a>
%F A081576 Rows are successive binomial transforms of F(n).
%F A081576 T(n, k) = ( ( (2*n + 1 + sqrt(5))/2 )^k - ( (2*n + 1 - sqrt(5))/2 )^k )/sqrt(5).
%F A081576 From _G. C. Greubel_, May 26 2021: (Start)
%F A081576 T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*n^(k-j) with T(0, k) = Fibonacci(k) (square array).
%F A081576 T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*(n-k)^(k-j) (antidiagonal triangle). (End)
%e A081576 Square array begins as:
%e A081576   0, 1,  1,   2,    3,    5,     8, ... A000045;
%e A081576   0, 1,  3,   8,   21,   55,   144, ... A001906;
%e A081576   0, 1,  5,  20,   75,  275,  1000, ... A030191;
%e A081576   0, 1,  7,  38,  189,  905,  4256, ... A099453;
%e A081576   0, 1,  9,  62,  387, 2305, 13392, ... A081574;
%e A081576   0, 1, 11,  92,  693, 4955, 34408, ... A081575;
%e A081576   0, 1, 13, 128, 1131, 9455, 76544, ...
%e A081576 The antidiagonal triangle begins as:
%e A081576   0;
%e A081576   0, 1;
%e A081576   0, 1,  1;
%e A081576   0, 1,  3,  2;
%e A081576   0, 1,  5,  8,   3;
%e A081576   0, 1,  7, 20,  21,   5;
%e A081576   0, 1,  9, 38,  75,  55,   8;
%e A081576   0, 1, 11, 62, 189, 275, 144, 13;
%t A081576 T[n_, k_]:= If[n==0, Fibonacci[k], Sum[Binomial[k, j]*Fibonacci[j]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}] //Flatten (* _G. C. Greubel_, May 26 2021 *)
%o A081576 (Magma)
%o A081576 A081576:= func< n,k | (&+[Binomial(k,j)*Fibonacci(j)*(n-k)^(k-j): j in [0..k]]) >;
%o A081576 [A081576(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, May 26 2021
%o A081576 (Sage)
%o A081576 def A081576(n,k): return sum( binomial(k,j)*fibonacci(j)*(n-k)^(k-j) for j in (0..k) )
%o A081576 flatten([[A081576(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 26 2021
%Y A081576 Array row n: A000045 (n=0), A001906 (n=1), A030191 (n=2), A099453 (n=3), A081574 (n=4), A081575 (n=5).
%Y A081576 Array columns k: A005408 (k=3), A077588 (k=4).
%Y A081576 Cf. A028387, A081573, A081574, A081575.
%K A081576 easy,nonn,tabl
%O A081576 0,9
%A A081576 _Paul Barry_, Mar 22 2003