cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081619 Numbers whose divisors can be arranged as equilateral triangle.

This page as a plain text file.
%I A081619 #24 Jul 07 2023 14:47:48
%S A081619 1,4,9,12,18,20,25,28,32,44,45,48,49,50,52,63,68,75,76,80,92,98,99,
%T A081619 112,116,117,121,124,144,147,148,153,162,164,169,171,172,175,176,188,
%U A081619 207,208,212,236,242,243,244,245,261,268,272,275,279,284,289,292,304,316
%N A081619 Numbers whose divisors can be arranged as equilateral triangle.
%C A081619 A000005(a(n))=A000217(m) for some m; A000005(A081620(n))=n*(n+1)/2.
%C A081619 Unit together with natural numbers n with number of nontrivial divisors equal to a perfect power. - _Juri-Stepan Gerasimov_, Oct 30 2009
%C A081619 This is wrong, e.g. a(29)=144, A000005(144)=15 and A075802(15-2)=0, see also example. - _Reinhard Zumkeller_, Jul 12 2013
%H A081619 Reinhard Zumkeller, <a href="/A081619/b081619.txt">Table of n, a(n) for n = 1..10000</a>
%F A081619 A010054(A000005(n)) = 1. - _Reinhard Zumkeller_, Jul 12 2013
%e A081619 n = 48, A000005(48) = 10, A010054(10) = 1 or A000217(4) = 10:
%e A081619 .            1
%e A081619 .          2   3
%e A081619 .        4   6   8
%e A081619 .     12  16  24  48     therefore 48 is a term: a(12) = 48;
%e A081619 n = 144, A000005(144) = 15, A010054(15) = 1 or A000217(5) = 15:
%e A081619 .             1
%e A081619 .           2   3
%e A081619 .         4   6   8
%e A081619 .       9  12  16  18
%e A081619 .    24  36  48  72  144    therefore 48 is a term: a(29) = 144.
%o A081619 (Haskell)
%o A081619 a081619 n = a081619_list !! (n-1)
%o A081619 a081619_list = filter ((== 1) . a010054 . a000005) [1..]
%o A081619 -- _Reinhard Zumkeller_, Jul 12 2013
%o A081619 (PARI) is(n)=ispolygonal(numdiv(n),3) \\ _Charles R Greathouse IV_, Oct 16 2015
%Y A081619 Cf. A000027, A001694, A081619, A144925.
%K A081619 nonn
%O A081619 1,2
%A A081619 _Reinhard Zumkeller_, Mar 24 2003
%E A081619 Example revised and extended by _Reinhard Zumkeller_, Jul 12 2013