cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081640 a(n) = n-th prime of class 12- according to the Erdős-Selfridge classification.

Original entry on oeis.org

14920303, 18224639, 24867247, 26532953, 34548443, 38003011, 39800743, 41319599, 41443483, 45604771, 46432667, 47247763, 49734341, 49734493, 49749439, 51591833, 53014667, 55257977, 59681383, 59700749, 60804817
Offset: 1

Views

Author

Robert G. Wilson v, Mar 23 2003

Keywords

Comments

The first 184 resp. 300 terms of A081430 allow us to deduce 44 resp. 84 consecutive terms of this sequence. - M. F. Hasler, Apr 05 2007

Examples

			a(1) = 14920303 = 1+2*A081430(3)*3 is the smallest 12- prime
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[3610000], ClassMinusNbr[ Prime[ # ]] == 12 &]]
  • PARI
    nextclassminus( a, p=1, n=[] )={ while( p, n=concat(n,p); p=0; for( i=1,#a, if( p & 2*a[i] >= p-1, break); for( k=ceil(n[ #n]/2/a[i]),a[ #a]/a[i], if( p & 2*k*a[i] >= p-1, break); if( isprime(2*k*a[i]+1), p=2*k*a[i]+1; break(1+(k==1)); ))));vecextract(n,"^1")}; A081640 = nextclassminus(A081430) \\ M. F. Hasler, Apr 05 2007

Formula

{ a(n) } = { p = 2*m*A081430(k)+1 | k=1,2,...,oo and m=1,2,... such that p is prime and m has no factor of class > 11- } - M. F. Hasler, Apr 05 2007

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 21 2007