cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081647 Integers congruent to 0, 1, 4, 9, 16, 25, 36 or 49 (mod 64) which are not squares.

This page as a plain text file.
%I A081647 #7 Nov 21 2013 12:47:59
%S A081647 65,68,73,80,89,113,128,129,132,137,153,164,177,192,193,201,208,217,
%T A081647 228,241,257,260,265,272,281,292,305,320,321,329,336,345,356,369,384,
%U A081647 385,388,393,409,420,433,448,449,452,457,464,473,497,512,513,516,521,528
%N A081647 Integers congruent to 0, 1, 4, 9, 16, 25, 36 or 49 (mod 64) which are not squares.
%D A081647 Mark A. Herkommer, Number Theory, A Programmer's Guide, McGraw-Hill, New York, 1999, page 315.
%t A081647 Select[ Range[546], (Mod[ #, 64] == 0 || Mod[ #, 64] == 1 || Mod[ #, 64] == 4 || Mod[ #, 64] == 9 || Mod[ #, 64] == 16 || Mod[ #, 64] == 25 || Mod[ #, 64] == 36 || Mod[ #, 64] == 49) && !IntegerQ[ Sqrt[ # ]] & ]
%t A081647 With[{nn=550},Select[Complement[Range[nn],Range[Ceiling[ Sqrt[nn]]]^2], MemberQ[ {0,1,4,9,16,25,36,49},Mod[#,64]]&]] (* _Harvey P. Dale_, Jul 26 2011 *)
%K A081647 easy,nonn
%O A081647 1,1
%A A081647 _Robert G. Wilson v_, Mar 26 2003