This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081658 #47 Jan 21 2025 10:37:51 %S A081658 1,1,0,1,0,-1,1,0,-3,0,1,0,-6,0,5,1,0,-10,0,25,0,1,0,-15,0,75,0,-61,1, %T A081658 0,-21,0,175,0,-427,0,1,0,-28,0,350,0,-1708,0,1385,1,0,-36,0,630,0, %U A081658 -5124,0,12465,0,1,0,-45,0,1050,0,-12810,0,62325,0,-50521,1,0,-55,0,1650,0,-28182,0,228525,0,-555731,0,1,0,-66,0,2475,0 %N A081658 Triangle read by rows: T(n, k) = (-2)^k*binomial(n, k)*Euler(k, 1/2). %C A081658 These are the coefficients of the Swiss-Knife polynomials A153641. - _Peter Luschny_, Jul 21 2012 %C A081658 Nonzero diagonals of the triangle are of the form A000364(k)*binomial(n+2k,2k)*(-1)^k. %C A081658 A363393 is the dual triangle ('dual' in the sense of Euler-tangent versus Euler-secant numbers). - _Peter Luschny_, Jun 05 2023 %F A081658 Coefficients of the polynomials in k in the binomial transform of the expansion of 2/(exp(kx)+exp(-kx)). %F A081658 From _Peter Luschny_, Jul 20 2012: (Start) %F A081658 p{n}(0) = Signed Euler secant numbers A122045. %F A081658 p{n}(1) = Signed Euler tangent numbers A155585. %F A081658 p{n}(2) has e.g.f. 2*exp(x)/(exp(-2*x)+1) A119880. %F A081658 2^n*p{n}(1/2) = Signed Springer numbers A188458. %F A081658 3^n*p{n}(1/3) has e.g.f. 2*exp(4*x)/(exp(6*x)+1) %F A081658 4^n*p{n}(1/4) has e.g.f. 2*exp(5*x)/(exp(8*x)+1). %F A081658 Row sum: A155585 (cf. A009006). Absolute row sum: A003701. %F A081658 The GCD of the rows without the first column: A155457. (End) %F A081658 From _Peter Luschny_, Jun 05 2023: (Start) %F A081658 T(n, k) = [x^(n - k)] Euler(k) / (1 - x)^(k + 1). %F A081658 For a recursion see the Python program. %F A081658 Conjecture: If n is prime then n divides T(n, k) for 1 <= k <= n-1. (End) %e A081658 The triangle begins %e A081658 [0] 1; %e A081658 [1] 1, 0; %e A081658 [2] 1, 0, -1; %e A081658 [3] 1, 0, -3, 0; %e A081658 [4] 1, 0, -6, 0, 5; %e A081658 [5] 1, 0, -10, 0, 25, 0; %e A081658 [6] 1, 0, -15, 0, 75, 0, -61; %e A081658 [7] 1, 0, -21, 0, 175, 0, -427, 0; %e A081658 ... %e A081658 From _Peter Luschny_, Sep 17 2021: (Start) %e A081658 The triangle shows the coefficients of the following polynomials: %e A081658 [1] 1; %e A081658 [2] 1 - x^2; %e A081658 [3] 1 - 3*x^2; %e A081658 [4] 1 - 6*x^2 + 5*x^4; %e A081658 [5] 1 - 10*x^2 + 25*x^4; %e A081658 [6] 1 - 15*x^2 + 75*x^4 - 61*x^6; %e A081658 [7] 1 - 21*x^2 + 175*x^4 - 427*x^6; %e A081658 ... %e A081658 These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to '-x'. The main antidiagonals consist only of ones. Substituting x <- 1 generates the Euler tangent numbers A155585. (Compare with A046739.) %e A081658 (End) %p A081658 ogf := n -> euler(n) / (1 - x)^(n + 1): %p A081658 ser := n -> series(ogf(n), x, 16): %p A081658 T := (n, k) -> coeff(ser(k), x, n - k): %p A081658 for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # _Peter Luschny_, Jun 05 2023 %p A081658 T := (n, k) -> (-2)^k*binomial(n, k)*euler(k, 1/2): %p A081658 seq(seq(T(n, k), k = 0..n), n = 0..9); # _Peter Luschny_, Apr 03 2024 %t A081658 sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n - k), {k, 0, n}]; %t A081658 Table[CoefficientList[sk[n, x], x] // Reverse, {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jun 04 2019 *) %t A081658 Flatten@Table[Binomial[n, k] EulerE[k], {n, 0, 12}, {k, 0, n}] (* _Oliver Seipel_, Jan 14 2025 *) %o A081658 (Sage) %o A081658 R = PolynomialRing(ZZ, 'x') %o A081658 @CachedFunction %o A081658 def p(n, x) : %o A081658 if n == 0 : return 1 %o A081658 return add(p(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2]) %o A081658 def A081658_row(n) : return [R(p(n,x)).reverse()[i] for i in (0..n)] %o A081658 for n in (0..8) : print(A081658_row(n)) # _Peter Luschny_, Jul 20 2012 %o A081658 (Python) %o A081658 from functools import cache %o A081658 @cache %o A081658 def T(n: int, k: int) -> int: %o A081658 if k == 0: return 1 %o A081658 if k % 2 == 1: return 0 %o A081658 if k == n: return -sum(T(n, j) for j in range(0, n - 1, 2)) %o A081658 return (T(n - 1, k) * n) // (n - k) %o A081658 for n in range(10): %o A081658 print([T(n, k) for k in range(n + 1)]) # _Peter Luschny_, Jun 05 2023 %Y A081658 Row reversed: A119879. %Y A081658 Cf. A000364, A046739, A155585, A363393. %K A081658 easy,sign,tabl %O A081658 0,9 %A A081658 _Paul Barry_, Mar 26 2003 %E A081658 Typo in data corrected by _Peter Luschny_, Jul 20 2012 %E A081658 Error in data corrected and new name by _Peter Luschny_, Apr 03 2024