A081705 k-tuple abundance of abundant numbers.
1, 1, 1, 2, 7, 1, 1, 6, 1, 5, 1, 2, 4, 1, 1, 3, 1, 3, 1, 2, 2, 1, 7, 1, 1, 1, 6, 8, 5, 3, 31, 2, 1, 30, 1, 1, 1, 28, 5, 2, 14, 4, 1, 1, 3, 1, 2, 1, 14, 4, 1, 29, 4, 1, 28, 7, 4, 5, 3, 1, 11, 2, 1, 6, 3, 12, 1, 11, 1, 1, 6, 5, 27, 18, 1, 1, 17, 1, 2, 3, 3, 1, 1, 14, 4, 4, 13, 1, 1, 12, 2, 3, 10, 1, 5, 1, 4
Offset: 1
Keywords
Examples
a(4)=2 because the 4th abundant number is 24 which has aliquot sequence 24->36->55->17->1, which has two increasing steps at the beginning.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..275 (first 97 terms from Gabriel Cunningham)
- H. W. Lenstra, Jr., Advanced Problems and Solutions, 6064, The American Mathematical Monthly, Vol. 84, No. 7. (Aug. - Sep., 1977), p. 580.
Programs
-
Maple
aliqRis := proc(n) local r,a,an ; r := 0 ; a := n; while true do an := numtheory[sigma](a)-a ; if an > a then r := r+1 ; a := an ; else RETURN(r) ; fi ; od ; end proc: A081705 := proc(n) aliqRis(A005101(n)) ; end proc: seq(A081705(n),n=1..100) ; # R. J. Mathar, Mar 07 2007
Formula
a(n) = 0 if n is not abundant, otherwise 1 + (a(sigma(n)-n)) Note, however, that non-abundant numbers are excluded from this sequence.
a(n) = number of increasing steps at the start of the aliquot chain of A005101(n).
Extensions
More terms from R. J. Mathar, Mar 07 2007
Comments