This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081720 #74 Feb 05 2024 14:20:49 %S A081720 1,1,3,1,4,10,1,6,21,55,1,8,39,136,377,1,13,92,430,1505,4291,1,18,198, %T A081720 1300,5895,20646,60028,1,30,498,4435,25395,107331,365260,1058058,1,46, %U A081720 1219,15084,110085,563786,2250311,7472984,21552969,1,78,3210,53764,493131,3037314 %N A081720 Triangle T(n,k) read by rows, giving number of bracelets (turnover necklaces) with n beads of k colors (n >= 1, 1 <= k <= n). %C A081720 From _Petros Hadjicostas_, Nov 29 2017: (Start) %C A081720 The formula given below is clear from the programs given in the Maple and Mathematica sections, while the g.f. for column k can be obtained using standard techniques. %C A081720 If we differentiate the column k g.f. m times, then we can get a formula for row m. (For this sequence, we only need to use this row m formula for 1 <= k <= m, but it is valid even for k>m.) For example, to get the formula for row 8, we have T(n=8,k) = d^8/dx^8 (column k g.f.)/8! evaluated at x=0. Here, "d^8/dx^8" means "8th derivative w.r.t. x" of the column k g.f. Doing so, we get T(n=8, k) = (k^6 - k^5 + k^4 + 3*k^3 + 2*k^2 - 2*k + 4)*(k + 1)*k/16, which is the formula given for sequence A060560. (Here, we use this formula only for 1 <= k <= 8.) %C A081720 (End) %D A081720 N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40. %H A081720 Andrew Howroyd, <a href="/A081720/b081720.txt">Table of n, a(n) for n = 1..1275</a> %H A081720 Yi Hu, <a href="https://hdl.handle.net/10161/23828">Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models</a>, Master's Thesis, Duke Univ. (2021). %H A081720 Yi Hu and Patrick Charbonneau, <a href="https://arxiv.org/abs/2106.08442">Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices</a>, arXiv:2106.08442 [cond-mat.stat-mech], 2021, cites the 4th column. %F A081720 See Maple code. %F A081720 From _Petros Hadjicostas_, Nov 29 2017: (Start) %F A081720 T(n,k) = ((1+k)*k^{n/2}/2 + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is even, and = (k^{(n+1)/2} + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is odd. %F A081720 G.f. for column k: (1/2)*((k*x+k*(k+1)*x^2/2)/(1-k*x^2) - Sum_{n>=1} (phi(n)/n)*log(1-k*x^n)) provided we chop off the Taylor expansion starting at x^k (and ignore all the terms x^n with n<k). %F A081720 (End) %F A081720 2*n*T(n,k) = A054618(n,k)+n*(1+k)^(n/2)/2 if n even, = A054618(n,k)+n*k^((n+1)/2) if n odd. - _R. J. Mathar_, Jan 23 2022 %e A081720 1; (A000027) %e A081720 1, 3; (A000217) %e A081720 1, 4, 10; (A000292) %e A081720 1, 6, 21, 55; (A002817) %e A081720 1, 8, 39, 136, 377; (A060446) %e A081720 1, 13, 92, 430, 1505, 4291; (A027670) %e A081720 1, 18, 198, 1300, 5895, 20646, 60028; (A060532) %e A081720 1, 30, 498, 4435, 25395, 107331, 365260, 1058058; (A060560) %e A081720 ... %e A081720 For example, when n=k=3, we have the following T(3,3)=10 bracelets of 3 beads using up to 3 colors: 000, 001, 002, 011, 012, 022, 111, 112, 122, and 222. (Note that 012 = 120 = 201 = 210 = 102 = 021.) _Petros Hadjicostas_, Nov 29 2017 %p A081720 A081720 := proc(n, k) %p A081720 local d, t1; %p A081720 t1 := 0; %p A081720 if n mod 2 = 0 then %p A081720 for d from 1 to n do %p A081720 if n mod d = 0 then %p A081720 t1 := t1+numtheory[phi](d)*k^(n/d); %p A081720 end if; %p A081720 end do: %p A081720 (t1+(n/2)*(1+k)*k^(n/2)) /(2*n) ; %p A081720 else %p A081720 for d from 1 to n do %p A081720 if n mod d = 0 then %p A081720 t1 := t1+numtheory[phi](d)*k^(n/d); %p A081720 end if; %p A081720 end do; %p A081720 (t1+n*k^((n+1)/2)) /(2*n) ; %p A081720 end if; %p A081720 end proc: %p A081720 seq(seq(A081720(n,k),k=1..n),n=1..10) ; %t A081720 t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 13 2012, after Maple, updated Nov 02 2017 *) %t A081720 Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n,k,Dihedral],{k,1,n}],{n,1,8}]//Grid (* _Geoffrey Critzer_, Oct 07 2012, after code by _T. D. Noe_ in A027671 *) %Y A081720 Cf. A321791 (extension to n >= 0, k >= 0). %Y A081720 Cf. A081721 (diagonal), A081722 (row sums), column sequences k=2..6: A000029, A027671, A032275, A032276, A056341. %K A081720 nonn,tabl %O A081720 1,3 %A A081720 _N. J. A. Sloane_, based on information supplied by _Gary W. Adamson_, Apr 05 2003 %E A081720 Name edited by _Petros Hadjicostas_, Nov 29 2017