cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081762 Primes p such that p*(p-2) divides 2^(p-1)-1.

This page as a plain text file.
%I A081762 #29 Sep 11 2023 17:30:13
%S A081762 3,5,17,37,257,457,1297,2557,4357,6481,8009,11953,26321,44101,47521,
%T A081762 47881,49681,57241,65537,74449,84421,97813,141157,157081,165601,
%U A081762 225457,278497,310591,333433,365941,403901,419711,476737,557041,560737,576721,1011961,1033057
%N A081762 Primes p such that p*(p-2) divides 2^(p-1)-1.
%C A081762 Primes p such that p-2 divides 2^(p-1) - 1.  The only member in A006512 is 5. - _Robert Israel_, Dec 03 2014
%C A081762 N=647089 is the smallest composite number such that (n-1)^2-1 divides 2^(n-1)-1. - _M. F. Hasler_, Jul 24 2015
%H A081762 Robert G. Wilson v, <a href="/A081762/b081762.txt">Table of n, a(n) for n = 1..1076</a> (first 303 terms from Chai Wah Wu)
%p A081762 select(p -> isprime(p) and 2 &^ (p-1) - 1  mod (p-2) = 0, [seq(2*i+1,i=1..10^6)]);  # _Robert Israel_, Dec 03 2014
%t A081762 Select[Prime[Range[2,81000]],PowerMod[2,#-1,#(#-2)]==1&] (* _Harvey P. Dale_, Sep 11 2023 *)
%o A081762 (PARI) lista(nn) = {forprime(p = 3, nn, if (! ((2^(p-1)-1) % (p*(p-2))), print1(p, ", "));)} \\ _Michel Marcus_, Dec 02 2013
%o A081762 (Python)
%o A081762 from sympy import prime
%o A081762 from gmpy2 import powmod
%o A081762 A081762_list = [p for p in (prime(n) for n in range(2,10**5)) if powmod(2,p-1,p*(p-2)) == 1] # _Chai Wah Wu_, Dec 03 2014
%K A081762 easy,nonn
%O A081762 1,1
%A A081762 _Benoit Cloitre_, Apr 09 2003
%E A081762 More terms from _Michel Marcus_, Dec 02 2013