This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081796 #19 Apr 24 2025 06:12:43 %S A081796 0,1,13,196,257087,249639161983,553029809670900697241813, %T A081796 575598315149214535162520163688459972096324096213, %U A081796 680813056961507163626080261194823226597566577785481001106845521689287461487322891517719568410606 %N A081796 Continued cotangent for sin(Pi/3) = sqrt(3)/2. %D A081796 Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 433-434. %D A081796 D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340. %H A081796 Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/iteration/article/">Lehmer's Constant</a> [broken link] %H A081796 Steven R. Finch, <a href="http://web.archive.org/web/20010603070928/http://www.mathsoft.com/asolve/constant/lehmer/lehmer.html">Lehmer's Constant</a> [From the Wayback machine] %F A081796 sqrt(3)/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))). %F A081796 Let b(0) = sqrt(3)/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)). %o A081796 (PARI) \p900 %o A081796 bn=vector(100); %o A081796 bn[1]=sqrt(3)/2; %o A081796 b(n)=if(n<0,0,bn[n]); %o A081796 for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))); %o A081796 a(n)=floor(b(n+1)); %Y A081796 Cf. A002065, A002666, A002667, A002668. %K A081796 nonn %O A081796 0,3 %A A081796 _Benoit Cloitre_, Apr 10 2003