This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081810 #18 Jul 19 2020 04:27:37 %S A081810 0,2,3,4,5,3,7,6,6,5,11,4,13,7,5,8,17,6,19,5,7,11,23,6,10,13,9,7,29,5, %T A081810 31,10,11,17,7,6,37,19,13,6,41,7,43,11,6,23,47,8,14,10,17,13,53,9,11, %U A081810 7,19,29,59,5,61,31,7,12,13,11,67,17,23,7,71,6,73,37,10,19,11,13,79,8,12 %N A081810 If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = Max{ p_i*e_i }. %C A081810 If x and y are coprime then a(x*y) = max(a(x),a(y)). - _Robert Israel_, Nov 27 2017 %H A081810 Robert Israel, <a href="/A081810/b081810.txt">Table of n, a(n) for n = 1..10000</a> %p A081810 f:= proc(n) max(seq(convert(t,`*`),t=ifactors(n)[2])) end proc: %p A081810 f(1):= 0: %p A081810 map(f, [$1..100]); # _Robert Israel_, Nov 27 2017 %t A081810 a[n_] := Module[{f = FactorInteger[n]}, Max[f[[All, 1]] f[[All, 2]]]]; %t A081810 Array[a, 100] (* _Jean-François Alcover_, Jul 19 2020 *) %o A081810 (PARI) a(n)=local(f); if(n==1,0,f=factor(n); vecmax(vector(matsize(f)[1],k,f[k,1]*f[k,2]))) %Y A081810 Cf. A081811 (with min). %K A081810 nonn %O A081810 1,2 %A A081810 _Benoit Cloitre_, Apr 10 2003