This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081837 #23 Jun 21 2024 14:18:23 %S A081837 2,3,4,12,9,10,12,11,9,10,8,22,13,13,15,12,35,30,48,18,166,166,68,40, %T A081837 73,137,57,1288,62,28,416,552,138,47,24,156,110,31,463,85,108,106,295, %U A081837 295,54,98,40,388,216,32,49,199,488,47,64,822,51,152,854,38,701,88,94,149 %N A081837 Let z(n) be e = exp(1.0) = 2.7182.... truncated to n decimal digits after the decimal point; sequence gives maximum element in the continued fraction for z(n). %H A081837 Paolo Xausa, <a href="/A081837/b081837.txt">Table of n, a(n) for n = 0..10000</a> %H A081837 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %e A081837 ... Here is Maple's computation of the first four terms of the sequence a: %e A081837 ....C2 := 2 %e A081837 ....cf := [2] %e A081837 ....a := [2] %e A081837 ..........27 %e A081837 ....C2 := -- %e A081837 ..........10 %e A081837 ....cf := [2, 1, 2, 3] %e A081837 ....a := [2, 3] %e A081837 ..........271 %e A081837 ....C2 := --- %e A081837 ..........100 %e A081837 ....cf := [2, 1, 2, 2, 4, 3] %e A081837 ....a := [2, 3, 4] %e A081837 ..........1359 %e A081837 ....C2 := ---- %e A081837 ..........500 %e A081837 ....cf := [2, 1, 2, 1, 1, 4, 1, 12] %e A081837 ....a := [2, 3, 4, 12] %p A081837 with(numtheory); Digits:=200: %p A081837 C1 := exp(1.0); %p A081837 for n from 1 to 100 do %p A081837 C2:= floor(C1*10^(n-1))/10^(n-1); %p A081837 cf := convert(evalf(C2),confrac): %p A081837 a := [op(a),max(cf)]; %p A081837 od: %p A081837 a; # _N. J. A. Sloane_, Jun 19 2024 %t A081837 A081837[n_] := Max[ContinuedFraction[Floor[E*10^n]/10^n]]; %t A081837 Array[A081837, 100, 0] (* _Paolo Xausa_, Jun 21 2024 *) %Y A081837 Cf. A001113, A003417, A081836 (analogous for phi), A373866 (analogous for Pi). %K A081837 base,nonn %O A081837 0,1 %A A081837 _Benoit Cloitre_, Apr 11 2003 %E A081837 Definition, initial term, and offset clarified by _N. J. A. Sloane_, Jun 19 2024 following a suggestion from _Harvey P. Dale_.