cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081844 Number of irreducible factors of x^(2n+1) - 1 over GF(2).

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 2, 5, 3, 2, 6, 3, 3, 4, 2, 7, 5, 6, 2, 5, 3, 4, 8, 3, 5, 8, 2, 5, 5, 2, 2, 13, 7, 2, 6, 3, 9, 8, 6, 3, 5, 2, 12, 5, 9, 10, 14, 5, 3, 8, 2, 3, 15, 2, 4, 5, 5, 6, 12, 9, 3, 8, 4, 19, 11, 2, 10, 11, 3, 2, 6, 5, 7, 10, 2, 11, 13, 14, 4, 5, 9, 2, 14, 3, 3, 12, 2, 9, 5, 2, 2, 5, 7, 8, 20, 3, 3, 20
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2003

Keywords

Comments

Also number of nonisomorphic "pure" chain rings with certain parameters.
Number of cycles under doubling map x -> 2*x (mod 2*n+1). - Joerg Arndt, Jan 22 2024

References

  • R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983; Theorem 2.47 page 65.

Crossrefs

Cf. A001037.
A000374 gives number of factors of x^n-1 for any n.
Cf. A037226 (number of primitive irreducible factors of x^(2n+1) - 1 over integers mod 2).
Cf. A006694 (number of factors of (x^(2*n+1) - 1) / (x - 1) over GF(2) ).

Programs

  • Maple
    with(numtheory); o := n->if n=1 then 1 else order(2,n); fi; A081844 := proc(n) local d, t1; t1 := 0; for d to n do if n mod d = 0 then t1 := t1 + phi(d)/o(d); end if; end do; t1; end proc;
    Factor(x^(2*n+1)-1) mod 2; nops(%);
  • Mathematica
    a[n_] := Length[Factor[x^(2n+1)-1, Modulus->2] ]; a[0]=1; (* or : *)
    a[n_] := Sum[ EulerPhi[d] / MultiplicativeOrder[2, d ], {d, Divisors[2n + 1]}]; Table[ a[n], {n, 0, 97}] (* Jean-François Alcover, Dec 14 2011 *)
  • PARI
    a(n)=sumdiv(2*n+1,d,eulerphi(d)/znorder(Mod(2,d)));
    vector(122,n,a(n-1)) /* Joerg Arndt, Jan 18 2011 */
    
  • Python
    from sympy import totient, n_order, divisors
    def A081844(n): return sum(totient(d)//n_order(2,d) for d in divisors((n+1<<1)-1,generator=True) if d>1) + 1 # Chai Wah Wu, Apr 09 2024

Formula

a(n) = Sum_{ d| 2*n+1 } phi(d)/ord_2(d), where phi = A000010, ord_2 = A002326.
a(n) = A006694(n) + 1. - Joerg Arndt, Apr 01 2019
a(n) = A000374(2*n+1). - Joerg Arndt, Jan 22 2024