A081850 Consider recurrence b(0) = (2n+1)/4, b(n) = b(0)*ceiling(b(n-1)); sequence gives number of steps to reach an integer (or -1 if no integer is ever reached).
3, 2, 3, 13, 1, 1, 4, 2, 2, 9, 2, 2, 1, 1, 7, 3, 7, 3, 4, 3, 1, 1, 2, 4, 5, 10, 5, 13, 1, 1, 14, 8, 5, 2, 10, 11, 1, 1, 6, 2, 2, 17, 2, 2, 1, 1, 3, 6, 16, 5, 3, 4, 1, 1, 2, 4, 7, 9, 4, 3, 1, 1, 15, 9, 4, 2, 7, 5, 1, 1, 3, 2, 2, 3, 2, 2, 1, 1, 5, 5, 6, 5, 6, 4, 1, 1, 2, 4, 4, 3, 3, 11, 1, 1, 3, 3, 7, 2, 4
Offset: 2
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
Digits := 100: c := ceil; A081850 := proc(a) local i,t0,t; t0 := a; t := 0; for i from 1 to 100 do if whattype(t0) <> integer then t0 := a*c(t0); t := t+1; else RETURN(t); fi; od; RETURN('FAIL'); end;