This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081863 #15 Dec 10 2013 13:31:13 %S A081863 24,240,168,480,264,21840,24,16320,3192,2640,552,43680,24,6960,57288, %T A081863 32640,24,15353520,24,216480,7224,5520,1128,1485120,264,12720,3192, %U A081863 13920,1416,454293840,24,65280,258888,240,18744,2241613920,24,240,13272,7360320,1992 %N A081863 Largest integer m such that m divides (sigma_(2n+1)(2k-1)-sigma(2k-1)) for all k>=1. %C A081863 a(n)==0 mod 24. It seems that a(n)==0 (mod 2n+1) if and only if 2n+1 is an odd prime. %C A081863 It appears that a(n)=24 for n in A045979, a(n)=168 for n in A051227, a(n)=264 for n in A051229, and a(n)=240 or 480 if n is in A051225. - _Michel Marcus_, Dec 07 2013 %o A081863 (PARI) ds(n, k) = sigma(2*k-1, 2*n+1) - sigma(2*k-1); %o A081863 a(n) = {my(m = ds(n, 1)); for (k=2, 100, m = gcd(m, ds(n, k));); m;} \\ Script computes gcd of 100 terms; for current data, 10 terms are actually sufficient; is there a better way? - _Michel Marcus_, Dec 07 2013 %Y A081863 Cf. A000203. %K A081863 nonn %O A081863 1,1 %A A081863 _Benoit Cloitre_, Apr 12 2003 %E A081863 a(12) corrected and more terms from _Michel Marcus_, Dec 07 2013