This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A081888 #23 Jun 19 2023 12:40:22 %S A081888 1,3,4,6,22,118,191,362,842,2042,2342,3622,16022,29642,66602,110881, %T A081888 143522,535802,5070662,6252122,6497402,10219442,69069002,1130187962 %N A081888 Numbers n such that the least positive primitive root of n is larger than the value for all positive numbers smaller than n. %C A081888 A081889 gives the primitive roots itself. Difference from A002229, A002230: In consideration of all n having primitive roots. A002229, A002230 only primes. %F A081888 Numbers 1, 2, 4, p^m and 2*p^m have primitive roots for odd primes p and m >=1 natural number. %p A081888 a306252 := proc(n::integer) %p A081888 local r; %p A081888 r := numtheory[primroot](n) ; %p A081888 if r <> FAIL then %p A081888 return r ; %p A081888 else %p A081888 return -1 ; %p A081888 end if; %p A081888 end proc: %p A081888 A081888 := proc() %p A081888 local rec,n,lpr ; %p A081888 rec := -1 ; %p A081888 for n from 1 do %p A081888 lpr := a306252(n) ; %p A081888 if lpr > rec then %p A081888 printf("%d,\n",n) ; %p A081888 rec := lpr ; %p A081888 end if; %p A081888 end do: %p A081888 end proc: %p A081888 A081888() ; # _R. J. Mathar_, Apr 04 2019 %t A081888 nmax = 10^5; %t A081888 r[n_] := r[n] = Module[{prl = PrimitiveRootList[n]}, If[prl == {}, -1, prl[[1]]]]; r[1] = 1; %t A081888 Reap[Module[{rec = -1, n, lpr}, For[n = 1, n <= nmax, n++, lpr = r[n]; If[lpr > rec, Print[n, " ", lpr]; Sow[n]; rec = lpr]]]][[2, 1]] (* _Jean-François Alcover_, Jun 19 2023, after _R. J. Mathar_ *) %o A081888 (Python) %o A081888 from sympy import primitive_root %o A081888 from itertools import count, islice %o A081888 def f(n): r = primitive_root(n); return r if r != None else 0 %o A081888 def agen(r=0): yield from ((m, r:=f(m))[0] for m in count(1) if f(m) > r) %o A081888 print(list(islice(agen(), 18))) # _Michael S. Branicky_, Feb 13 2023 %Y A081888 Cf. A081889, A002229, A002230. Positions of records of A306252. %K A081888 nonn,more %O A081888 1,2 %A A081888 _Sven Simon_, Mar 30 2003 %E A081888 a(24) from _Michael S. Branicky_, Feb 20 2023