A081891 a(n) = 10^n - 9^n - 8^n - 7^n + 3*6^n.
1, 4, 14, 64, 830, 14704, 228734, 3136144, 39450110, 468241264, 5338397054, 59140070224, 641540046590, 6850671429424, 72282030453374, 755587489260304, 7840735233590270, 80889167950995184, 830567232465613694, 8495462278285810384, 86620589245358801150, 880864903819470714544
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (40,-635,5000,-19524,30240).
Crossrefs
Cf. A081690.
Formula
G.f.: -(6684*x^4-2956*x^3+489*x^2-36*x+1)/((6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(10*x-1)). [Colin Barker, Aug 12 2012]
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(6*x)*(exp(4*x) - exp(3*x) - exp(2*x) - exp(x) + 3).
a(n) = 40*a(n-1) - 635*a(n-2) + 5000*a(n-3) - 19524*a(n-4) + 30240*a(n-5) for n > 4. (End)
Extensions
a(19)-a(21) from Elmo R. Oliveira, Sep 12 2024
Comments