cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081975 Triangular number pertaining to A081974. a(n) = A081974(n)*A081974(n+1).

Original entry on oeis.org

3, 6, 10, 45, 36, 28, 91, 78, 66, 231, 210, 120, 276, 1035, 630, 378, 1431, 1378, 780, 990, 528, 496, 465, 300, 820, 3321, 3240, 2080, 5356, 5253, 1275, 1225, 1176, 1128, 4371, 4278, 4186, 5460, 4560, 11476, 11325, 2775, 666, 2016, 12880, 6555, 1596
Offset: 1

Views

Author

Amarnath Murthy, Apr 03 2003

Keywords

Comments

A subset of A000217. - R. J. Mathar, Apr 05 2007

Crossrefs

Programs

  • Maple
    isA000217 := proc(n) local t; t := (sqrt(1+8*n)-1)/2 ; type(t,'integer'); end: A081974 := proc(nmax) local a,n,prodset; a := [1,3] ; prodset := {3} ; while nops(a) < nmax do n := 2 ; while n in a or n*op(-1,a) in prodset or isA000217(n*op(-1,a)) = false do n := n+1 ; od ; prodset := prodset union { n*op(-1,a) } ; a := [op(a),n] ; od ; RETURN(a) ; end: A081975 := proc(nmax) local a ; a081974 := A081974(nmax) ; a := [] ; for i from 2 to nops(a081974) do a := [op(a), op(i,a081974)*op(i-1,a081974)] ; od ; RETURN(a) ; end: a := A081975(100) ; # R. J. Mathar, Apr 05 2007
  • Mathematica
    istriang[n_] := With[{x = Floor[Sqrt[2*n]]}, n == x*(x + 1)/2];
    nmax = 47;
    Clear[b, used, tris];
    b[] = 0; used[] = 0; tris[_] = 0; b[1] = 1; used[1] = 1;
    For[i = 2, i <= nmax+1, i++, f = b[i-1]; j = 2; While[used[j] == 1 || !istriang[f*j] || tris[f*j] == 1, j++]; b[i] = j; used[j] = 1; tris[f*j] = 1];
    a[n_] := b[n]*b[n + 1];
    Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, May 23 2024, after PARI code in A081974 *)

Extensions

More terms from R. J. Mathar, Apr 05 2007

A081976 For n > 2, a(n) is minimal so that the products of two adjacent terms are distinct Fibonacci numbers.

Original entry on oeis.org

1, 2, 4, 36, 1288, 3732552, 13845944773136, 431339599553022278260254864, 184905369551724915055273665254253822188651964997391392
Offset: 1

Views

Author

Amarnath Murthy, Apr 03 2003

Keywords

Crossrefs

Formula

a(n-1)*a(n) = A079613(n-2) = F(2^(n-2)*3), where F(k) is the k-th Fibonacci number.
Showing 1-2 of 2 results.