This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082044 #36 Jan 12 2025 05:06:59 %S A082044 1,4,25,100,289,676,1369,2500,4225,6724,10201,14884,21025,28900,38809, %T A082044 51076,66049,84100,105625,131044,160801,195364,235225,280900,332929, %U A082044 391876,458329,532900,616225,708964,811801,925444,1050625,1188100 %N A082044 Main diagonal of A082043: a(n) = n^4 + 2*n^2 + 1. %C A082044 a(n) = longest side b of all integer-sided triangles with sides a <= b <= c and inradius n >= 1. Triangle has sides (n^2+2, n^4+2*n^2+1, n^4+3*n^2+1). %H A082044 G. C. Greubel, <a href="/A082044/b082044.txt">Table of n, a(n) for n = 0..1000</a> %H A082044 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A082044 a(n) = n^4 + 2*n^2 + 1. %F A082044 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - _Harvey P. Dale_, Feb 27 2015 %F A082044 a(n) = (4*A000217(n-1)^2 + 2*A002061(n))^2 / a(n-1). - _Bruce J. Nicholson_, Apr 17 2017 %F A082044 a(n) = A002522(n)^2 = (n^2 + 1)^2 = a(-n) for all n in Z. - _Michael Somos_, Apr 17 2017 %F A082044 G.f.: (1 - x + 15*x^2 + 5*x^3 + 4*x^4) / (1 - x)^5. - _Michael Somos_, Apr 17 2017 %F A082044 From _Amiram Eldar_, Nov 02 2021: (Start) %F A082044 Sum_{n>=0} 1/a(n) = Pi^2*csch(Pi)^2/4 + Pi*coth(Pi)/4 + 1/2. %F A082044 Sum_{n>=0} (-1)^n/a(n) = Pi^2*csch(Pi)*coth(Pi)/4 + Pi*csch(Pi)/4 + 1/2. (End) %F A082044 E.g.f.: (1 + 3*x + 9*x^2 + 6*x^3 + x^4)*exp(x). - _G. C. Greubel_, Dec 24 2022 %e A082044 G.f. = 1 + 4*x + 25*x^2 + 100*x^3 + 289*x^4 + 676*x^5 + 1369*x^6 + ... %p A082044 seq(fibonacci(3,n)^2,n=0..33); # _Zerinvary Lajos_, Apr 09 2008 %t A082044 Fibonacci[3,Range[0,40]]^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,25,100,289},40] (* _Harvey P. Dale_, Feb 27 2015 *) %o A082044 (PARI) a(n) = n^4+2*n^2+1; \\ _Michel Marcus_, Jan 22 2016 %o A082044 (Magma) [(n^2+1)^2: n in [0..40]]; // _G. C. Greubel_, Dec 24 2022 %o A082044 (SageMath) [(n^2+1)^2 for n in range(41)] # _G. C. Greubel_, Dec 24 2022 %Y A082044 Cf. A000217, A002061 A002522, A059826, A082043, A082047. %Y A082044 See A120062 for sequences related to integer-sided triangles with integer inradius n. %K A082044 easy,nonn %O A082044 0,2 %A A082044 _Paul Barry_, Apr 03 2003