A082056 Least x = a(n) such that sum of common prime divisors (without multiplicity) of sigma(x) and phi(x) equals n, or 0 if such number (apparently) does not exist.
0, 3, 18, 0, 14, 0, 88, 1800, 116, 196, 9801, 377, 2881, 1189, 711, 989, 3596, 477, 6901, 5203, 8473, 9179, 3956, 7067, 6439, 27709, 41309, 10763, 27117, 20569, 10207, 69091, 4976, 15376, 114953, 18650, 204469, 37225, 16279, 130300, 74450, 10877
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] t=Table[0, {100}]; Do[s=Apply[Plus, Intersection [ba[EulerPhi[n]], ba[DivisorSigma[1, n]]]]; If[s<101&&t[[s]]\[Equal]0, t[[s]]=n], {n, 2, 1000000}]; t
Comments