A082057 Least x=a(n) such that product of common prime-divisors [without multiplicity] of sigma(x) and phi(x) equals n; or 0 if n is not a squarefree number or if no such x exists. Among indices n only squarefree numbers arise because multiplicity of prime factors is ignored.
1, 3, 18, 0, 200, 14, 3364, 0, 0, 88, 9801, 0, 25281, 116, 1800, 0, 36992, 0, 4414201, 0, 196, 2881, 541696, 0, 0, 711, 0, 0, 98942809, 209, 1547536, 0, 19602, 6901, 814088, 0, 49042009, 8473, 1521, 0, 3150464641, 377, 245178368, 0, 0, 6439, 9265217536, 0, 0
Offset: 1
Keywords
Examples
For n = 85: a(85) = 924800 = 128*5*5*17*17; sigma(924800) = 2426835 = 3*5*17*31*307; phi(924800) = 348160 = 4096*5*17; common prime factor 5.17 = 85.
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] t=Table[0, {100}]; Do[s=Apply[Times, Intersection [ba[EulerPhi[n]], ba[DivisorSigma[1, n]]]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}]; t
Formula
a(n) = Min{x; A082055(x)=n}; 0 if n is not squarefree.
Extensions
Corrected and extended by David Wasserman, Aug 27 2004