cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082062 Greatest common prime-divisor of n and sigma(n)=A000203(n); a(n)=1 if no common prime-divisor exists.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 7, 1, 3, 1, 1, 3, 2, 1, 1, 1, 2, 1, 5, 1, 3, 1, 2, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 7, 1, 2, 3, 2, 1, 3, 7, 2, 1, 2, 5, 3, 1, 1, 3, 1, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    "factors/exponent SET "; ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] f1[x_] := x; f2[x_] := DivisorSigma[1, x] Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
  • PARI
    gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1)
    a(n)=gpf(gcd(sigma(n),n)) \\ Charles R Greathouse IV, Feb 19 2013

Extensions

Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022