This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082069 #15 Jan 29 2022 13:09:33 %S A082069 1,1,1,1,1,2,1,1,1,2,1,2,1,2,5,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,1,1,2, %T A082069 5,3,1,2,1,2,1,2,1,2,1,2,1,2,1,5,1,2,1,2,1,2,1,2,1,2,1,2,7,1,5,2,1,2, %U A082069 1,2,1,1,1,2,3,2,1,2,1,2,1,2,1,2,5,2,1,2,1,2,1,2,1,2,1,2,1,1,1,1,1,2,1,2,5 %N A082069 Smallest common prime-divisor of n and Sigma_2(n) = A001157(n); a(n) = 1 if no common prime-divisor exists. %H A082069 Antti Karttunen, <a href="/A082069/b082069.txt">Table of n, a(n) for n = 1..16384</a> %F A082069 a(n) = A020639(A179930(n)). - _Antti Karttunen_, Nov 03 2017 %t A082069 ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := n; f2[x_] := DivisorSigma[2, x]; Table[Min[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}] %t A082069 (* Second program: *) %t A082069 Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, DivisorSigma[2, #]} &, 105] (* _Michael De Vlieger_, Nov 03 2017 *) %o A082069 (PARI) %o A082069 A020639(n) = if(1==n,n,vecmin(factor(n)[, 1])); %o A082069 A082069(n) = A020639(gcd(sigma(n,2), n)); \\ _Antti Karttunen_, Nov 03 2017 %Y A082069 Cf. A001157, A020639, A179930. %Y A082069 Cf. also A082063, A082067, A082068, A082070, A082071, A082072. %K A082069 nonn %O A082069 1,6 %A A082069 _Labos Elemer_, Apr 07 2003 %E A082069 Changed "was found" to "exists" in definition. - _N. J. A. Sloane_, Jan 29 2022