This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082099 #13 Feb 11 2025 01:30:04 %S A082099 13,89,509,1933,1637,1669,5953,27701,12853,19333,36389,28229,19609, %T A082099 82073,102701,89689,134513,31397,212701,815729,461717,1155733,927869, %U A082099 360653,396733,3422813,3279841,370261,5845193,6085441,6808273,9810653 %N A082099 a(n) is the smallest prime p of the form 4k+1 such that nextprime(p) - p = 4n. %H A082099 Amiram Eldar, <a href="/A082099/b082099.txt">Table of n, a(n) for n = 1..100</a> %e A082099 a(9) = 12853 since nextprime(12853) - 12853 = 12889 - 12853 = 36 = 4 * 9. %t A082099 {m=4, r=1}; f[x_] := (Prime[x+1]-Prime[x])/m t=Table[0, {100}]; Do[s=f[n]; s1=Mod[Prime[n+1], m]; If[IntegerQ[s]&&Equal[s1, r]&&s<101&&t[[s]]==0, t[[s]]=Prime[n]], {n, 1, 1000000}]; t %o A082099 (PARI) list(len) = {my(v = vector(len), c = 0, p1 = 2, r1 = p1 % 4, r2, i); forprime(p2 = 3, , r2 = p2 % 4; if(r1 == 1 && r2 == 1, i = (p2 - p1) / 4; if(i <= len && v[i] == 0, c++; v[i] = p1; if(c == len, break))); p1 = p2; r1 = r2); v;} \\ _Amiram Eldar_, Feb 11 2025 %Y A082099 Cf. A002144, A002145, A082073, A082074, A082075, A082076, A082098. %K A082099 nonn %O A082099 1,1 %A A082099 _Labos Elemer_, Apr 14 2003