This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082105 #14 Dec 24 2022 03:52:51 %S A082105 1,1,1,1,6,1,1,13,13,1,1,22,33,22,1,1,33,61,61,33,1,1,46,97,118,97,46, %T A082105 1,1,61,141,193,193,141,61,1,1,78,193,286,321,286,193,78,1,1,97,253, %U A082105 397,481,481,397,253,97,1,1,118,321,526,673,726,673,526,321,118,1 %N A082105 Array A(n, k) = (k*n)^2 + 4*(k*n) + 1, read by antidiagonals. %H A082105 G. C. Greubel, <a href="/A082105/b082105.txt">Antidiagonals n = 0..50, flattened</a> %F A082105 A(n, k) = (k*n)^2 + 4*(k*n) + 1 (square array). %F A082105 A(n, n) = T(2*n, n) = A082106(n) (main diagonal). %F A082105 T(n, k) = A(n-k, k) (number triangle). %F A082105 Sum_{k=0..n} T(n, k) = A082107(n) (diagonal sums). %F A082105 T(n, n-1) = A028872(n-1), n >= 1. %F A082105 T(n, n-2) = A082109(n-2), n >= 2. %F A082105 From _G. C. Greubel_, Dec 22 2022: (Start) %F A082105 Sum_{k=0..n} (-1)^k * T(n, k) = ((1+(-1)^n)/2)*A016897(n-1). %F A082105 T(2*n+1, n+1) = A047673(n+1), n >= 0. %F A082105 T(n, n-k) = T(n, k). (End) %e A082105 Array, A(n, k), begins as: %e A082105 1, 1, 1, 1, 1, 1, ... A000012; %e A082105 1, 6, 13, 22, 33, 46, ... A028872; %e A082105 1, 13, 33, 61, 97, 141, ... A082109; %e A082105 1, 22, 61, 118, 193, 286, ... ; %e A082105 1, 33, 97, 193, 321, 481, ... ; %e A082105 1, 46, 141, 286, 481, 726, ... ; %e A082105 Triangle, T(n, k), begins as: %e A082105 1; %e A082105 1, 1; %e A082105 1, 6, 1; %e A082105 1, 13, 13, 1; %e A082105 1, 22, 33, 22, 1; %e A082105 1, 33, 61, 61, 33, 1; %e A082105 1, 46, 97, 118, 97, 46, 1; %e A082105 1, 61, 141, 193, 193, 141, 61, 1; %e A082105 1, 78, 193, 286, 321, 286, 193, 78, 1; %t A082105 T[n_, k_]:= (k*(n-k))^2 + 4*(k*(n-k)) + 1; %t A082105 Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 22 2022 *) %o A082105 (Magma) [(k*(n-k))^2 + 4*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // _G. C. Greubel_, Dec 22 2022 %o A082105 (SageMath) %o A082105 def A082105(n,k): return (k*(n-k))^2 + 4*(k*(n-k)) + 1 %o A082105 flatten([[A082105(n,k) for k in range(n+1)] for n in range(14)]) # _G. C. Greubel_, Dec 22 2022 %Y A082105 Cf. A016897, A028872, A047673, A082043, A082046, A082106, A082107, A082109. %K A082105 easy,nonn,tabl %O A082105 0,5 %A A082105 _Paul Barry_, Apr 03 2003