This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082110 #11 Dec 23 2022 07:52:09 %S A082110 1,1,1,1,7,1,1,15,15,1,1,25,37,25,1,1,37,67,67,37,1,1,51,105,127,105, %T A082110 51,1,1,67,151,205,205,151,67,1,1,85,205,301,337,301,205,85,1,1,105, %U A082110 267,415,501,501,415,267,105,1,1,127,337,547,697,751,697,547,337,127,1 %N A082110 Array A(n,k) = (k*n)^2 + 5*(k*n) + 1, read by antidiagonals. %H A082110 G. C. Greubel, <a href="/A082110/b082110.txt">Antidiagonals n = 0..50, flattened</a> %F A082110 A(n, k) = (k*n)^2 + 5*(k*n) + 1 (Square array). %F A082110 A(k, n) = A(n, k). %F A082110 A(2, k) = A082111(k). %F A082110 A(3, k) = A082112(k). %F A082110 A(n, n) = T(2*n, n) = A082113(n) (main diagonal). %F A082110 T(n, k) = (k*(n-k))^2 + 5*k*(n-k) + 1 (number triangle). %F A082110 Sum_{k=0..n} T(n, k) = A082114(n) (diagonal sums of the array). %F A082110 From _G. C. Greubel_, Dec 22 2022: (Start) %F A082110 T(n, n-k) = T(n, k). %F A082110 Sum_{k=0..n} (-1)^k*T(n, k) = (1 - 3*n)*(1 + (-1)^n)/2. (End) %e A082110 Square array, A(n, k), begins as: %e A082110 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012; %e A082110 1, 7, 15, 25, 37, 51, 67, 85, 105, ... A082111; %e A082110 1, 15, 37, 67, 105, 151, 205, 267, 337, ... A082112; %e A082110 1, 25, 67, 127, 205, 301, 415, 547, 697, ... %e A082110 1, 37, 105, 205, 337, 501, 697, 925, 1185, ... %e A082110 1, 51, 151, 301, 501, 751, 1051, 1401, 1801, ... %e A082110 1, 67, 205, 415, 697, 1051, 1477, 1975, 2545, ... %e A082110 1, 85, 267, 547, 925, 1401, 1975, 2647, 3417, ... %e A082110 1, 105, 337, 697, 1185, 1801, 2545, 3417, 4417, ... %e A082110 Antidiagonals, T(n, k), begins as: %e A082110 1; %e A082110 1, 1; %e A082110 1, 7, 1; %e A082110 1, 15, 15, 1; %e A082110 1, 25, 37, 25, 1; %e A082110 1, 37, 67, 67, 37, 1; %e A082110 1, 51, 105, 127, 105, 51, 1; %e A082110 1, 67, 151, 205, 205, 151, 67, 1; %e A082110 1, 85, 205, 301, 337, 301, 205, 85, 1; %t A082110 T[n_, k_]:= (k*(n-k))^2 + 5*(k*(n-k)) + 1; %t A082110 Table[T[n,k], {n,0,13}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 22 2022 *) %o A082110 (Magma) [(k*(n-k))^2 + 5*(k*(n-k)) + 1: k in [0..n], n in [0..13]]; // _G. C. Greubel_, Dec 22 2022 %o A082110 (SageMath) %o A082110 def A082110(n,k): return (k*(n-k))^2 + 5*(k*(n-k)) + 1 %o A082110 flatten([[A082110(n,k) for k in range(n+1)] for n in range(14)]) # _G. C. Greubel_, Dec 22 2022 %Y A082110 Cf. A082039, A082043, A082046, A082105, A082111, A082112, A082113, A082114. %K A082110 easy,nonn,tabl %O A082110 0,5 %A A082110 _Paul Barry_, Apr 04 2003