cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082112 a(n) = 4*n^2 + 10*n + 1.

This page as a plain text file.
%I A082112 #26 Dec 23 2022 07:51:47
%S A082112 1,15,37,67,105,151,205,267,337,415,501,595,697,807,925,1051,1185,
%T A082112 1327,1477,1635,1801,1975,2157,2347,2545,2751,2965,3187,3417,3655,
%U A082112 3901,4155,4417,4687,4965,5251,5545,5847,6157,6475,6801,7135,7477,7827,8185,8551
%N A082112 a(n) = 4*n^2 + 10*n + 1.
%C A082112 A row of number array A082110.
%H A082112 G. C. Greubel, <a href="/A082112/b082112.txt">Table of n, a(n) for n = 0..1000</a>
%H A082112 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A082112 a(n) = a(n-1) + 8*n + 6 (with a(0)=1). - _Vincenzo Librandi_, Aug 08 2010
%F A082112 G.f.: (1+12*x-5*x^2) / (1-x)^3. - _R. J. Mathar_, Dec 03 2014
%F A082112 a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - _Wesley Ivan Hurt_, Dec 22 2021
%F A082112 E.g.f.: (1 + 14*x + 4*x^2)*exp(x). - _G. C. Greubel_, Dec 22 2022
%t A082112 Table[n +(n+1)^2 -4, {n,1,200, 2}] (* _Vladimir Joseph Stephan Orlovsky_, Jun 26 2011 *)
%t A082112 LinearRecurrence[{3,-3,1},{1,15,37},50] (* _Harvey P. Dale_, Dec 18 2014 *)
%o A082112 (PARI) a(n)=4*n^2+10*n+1 \\ _Charles R Greathouse IV_, Jun 17 2017
%o A082112 (Magma) [4*n^2 + 10*n + 1 : n in [0..50]]; // _Wesley Ivan Hurt_, Dec 22 2021
%o A082112 (SageMath) [4*n^2+10*n+1 for n in range(51)] # _G. C. Greubel_, Dec 22 2022
%Y A082112 Cf. A082108, A082109, A082110.
%K A082112 easy,nonn
%O A082112 0,2
%A A082112 _Paul Barry_, Apr 04 2003