This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082117 #44 Feb 16 2025 08:32:48 %S A082117 0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4, %T A082117 1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5, %U A082117 3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2 %N A082117 Fibonacci sequence (mod 6). %H A082117 Vincenzo Librandi, <a href="/A082117/b082117.txt">Table of n, a(n) for n = 0..1000</a> %H A082117 Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, Daisy Ann A. Disu, <a href="http://docplayer.net/87034980-Vol-15-no-2-april-2017-dmmmsu-cas-science-monitor.html">On Fractal Sequences</a>, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113. %H A082117 Syamsudhuha Muslim, Sri Gemawati, <a href="https://doi.org/10.12988/imf.2018.827">The Identity of Fibonacci Numbers Z6</a>, International Mathematical Forum, Vol. 13, 2018, no. 5, 225-231. %H A082117 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a> %H A082117 <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). %F A082117 Sequence is periodic with Pisano period 24 = A001175(6). %F A082117 G.f.: -x*(x^22 + 5*x^21 + 2*x^20 + 3*x^19 + 5*x^18 + 4*x^17 + x^16 + 3*x^15 + 4*x^14 + 5*x^13 + 5*x^12 + 5*x^10 + x^9 + 4*x^8 + 3*x^7 + x^6 + 2*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1)/((x - 1)*(x + 1)*(x^2 - x + 1)*(x^2 + 1)*(x^2 + x + 1)*(x^4 - x^2 + 1)*(x^4 + 1)*(x^8 - x^4 + 1)). - _Colin Barker_, Aug 15 2012 %t A082117 Table[Mod[Fibonacci[n], 6], {n, 0, 100}] (* _Alonso del Arte_, Jul 29 2013 *) %o A082117 (Magma) [Fibonacci(n) mod 6: n in [0..100]]; // _Vincenzo Librandi_, Feb 04 2014 %o A082117 (PARI) a(n)=fibonacci(n)%6 \\ _Charles R Greathouse IV_, Oct 07 2016 %Y A082117 Cf. A011655, A082115, A079343, A082116, A082117, A079344. %K A082117 nonn,easy %O A082117 0,4 %A A082117 _Eric W. Weisstein_, Apr 03 2003 %E A082117 Added a(0)=0 from _Vincenzo Librandi_, Feb 04 2014