cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082137 Square array of transforms of binomial coefficients, read by antidiagonals.

This page as a plain text file.
%I A082137 #54 Feb 15 2021 02:00:54
%S A082137 1,1,1,1,2,2,1,3,6,4,1,4,12,16,8,1,5,20,40,40,16,1,6,30,80,120,96,32,
%T A082137 1,7,42,140,280,336,224,64,1,8,56,224,560,896,896,512,128,1,9,72,336,
%U A082137 1008,2016,2688,2304,1152,256,1,10,90,480,1680,4032,6720,7680,5760,2560,512
%N A082137 Square array of transforms of binomial coefficients, read by antidiagonals.
%C A082137 Rows are associated with the expansions of (x^k/k!)exp(x)cosh(x) (leading zeros dropped). Rows include A011782, A057711, A080929, A082138, A080951, A082139, A082140, A082141. Columns are of the form 2^(k-1)C(n+k, k). Diagonals include A069723, A082143, A082144, A082145, A069720.
%C A082137 T(n, k) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha)= |Dom(alpha)|). - _Abdullahi Umar_, Oct 02 2008
%C A082137 Read as a triangle this is A119468 with rows reversed. A119468 has e.g.f. exp(z*x)/(1-tanh(x)). - _Peter Luschny_, Aug 01 2012
%C A082137 Read as a triangle this is a subtriangle of A198793. - _Philippe Deléham_, Nov 10 2013
%H A082137 G. C. Greubel, <a href="/A082137/b082137.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A082137 Laradji, A. and Umar, <a href="http://dx.doi.org/10.1016/j.jalgebra.2003.10.023">A. Combinatorial results for semigroups of order-preserving partial transformations</a>, Journal of Algebra 278, (2004), 342-359.
%H A082137 Laradji, A. and Umar, A. <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Umar/um.html">Combinatorial results for semigroups of order-decreasing partial transformations</a>, J. Integer Seq. 7 (2004), 04.3.8.
%F A082137 Square array defined by T(n, k)=(2^(n-1)+0^n/2)C(n + k, n)= Sum{k=0..n, C(n+k, k+j)C(k+j, k)(1+(-1)^j)/2 }.
%F A082137 As an infinite lower triangular matrix, equals A007318 * A134309. - _Gary W. Adamson_, Oct 19 2007
%F A082137 O.g.f. for array read as a triangle: (1-x*(1+t))/((1-x)*(1-x*(1+2*t))) = 1 + x*(1+t) + x^2*(1+2*t+2*t^2) + x^3*(1+3*t+6*t^2+4*t^3) + .... - _Peter Bala_, Apr 26 2012
%F A082137 For array read as a triangle: T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) -2*T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Nov 10 2013
%e A082137 Rows begin
%e A082137   1 1  2   4   8 ...
%e A082137   1 2  6  16  40 ...
%e A082137   1 3 12  40 120 ...
%e A082137   1 4 20  80 280 ...
%e A082137   1 5 30 140 560 ...
%e A082137 Read as a triangle, this begins:
%e A082137   1
%e A082137   1, 1
%e A082137   1, 2,  2
%e A082137   1, 3,  6,  4
%e A082137   1, 4, 12, 16,   8
%e A082137   1, 5, 20, 40,  40, 16
%e A082137   1, 6, 30, 80, 120, 96, 32
%e A082137   ... - _Philippe Deléham_, Nov 10 2013
%p A082137 # As a triangular array:
%p A082137 T := (n,k) -> 2^(k+0^k-1)*binomial(n,k):
%p A082137 for n from 0 to 9 do seq(T(n,k), k=0..n) od; # _Peter Luschny_, Nov 10 2017
%t A082137 rows = 11; t[n_, k_] := 2^(n-1)*(n+k)!/(n!*k!); t[0, _] = 1; tkn = Table[ t[n, k], {k, 0, rows}, {n, 0, rows}]; Flatten[ Table[ tkn[[ n-k+1, k ]], {n, 1, rows}, {k, 1, n}]] (* _Jean-François Alcover_, Jan 20 2012 *)
%o A082137 (Sage)
%o A082137 def A082137_row(n) : # as a triangular array
%o A082137     var('z')
%o A082137     s = (exp(z*x)/(1-tanh(x))).series(x,n+2)
%o A082137     t = factorial(n)*s.coefficient(x,n)
%o A082137     return [t.coefficient(z,n-k) for k in (0..n)]
%o A082137 for n in (0..7) : print(A082137_row(n))  # _Peter Luschny_, Aug 01 2012
%Y A082137 Cf. A119468, A007318, A134309.
%K A082137 easy,nonn,tabl
%O A082137 0,5
%A A082137 _Paul Barry_, Apr 06 2003