This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082170 #19 Jan 20 2024 09:27:21 %S A082170 1,1,1,1,8,15,1,27,368,1024,1,64,2727,53672,198581,1,125,11904,710532, %T A082170 18417792,85102056,1,216,38375,4975936,386023509,12448430408, %U A082170 68999174203,1,343,101520,23945000,3977848832,381535651512,14734002979456,95264160938080 %N A082170 Deterministic completely defined quasi-acyclic automata with 3 inputs, n transient and k absorbing labeled states. %C A082170 Array read by antidiagonals: (0,1),(0,2),(1,1),(0,3),... %C A082170 The first column is A082158. %H A082170 G. C. Greubel, <a href="/A082170/b082170.txt">Antidiagonals n = 0..50, flattened</a> %H A082170 Valery A. Liskovets, <a href="http://igm.univ-mlv.fr/~fpsac/FPSAC03/ARTICLES/5.pdf">Exact enumeration of acyclic automata</a>, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003. %H A082170 Valery A. Liskovets, <a href="http://dx.doi.org/10.1016/j.dam.2005.06.009">Exact enumeration of acyclic deterministic automata</a>, Discrete Appl. Math., 154, No.3 (2006), 537-551. %F A082170 T(n, k) = T_3(n, k) where T_3(0, k) = 1, T_3(n, k) = Sum_{i=0..n-1} (-1)^(n-i-1)*binomial(n, i)*(i+k)^(3*n-3*i)*T_3(i, k), n > 0. %e A082170 The array begins: %e A082170 1, 1, 1, 1, ...; %e A082170 1, 8, 27, 64, ...; %e A082170 15, 368, 2727, 11904, ...; %e A082170 1024, 53672, 710532, 4975936, ...; %e A082170 198581, 18417792, 386023509, 3977848832, ...; %e A082170 85102056, 12448430408, 381535651512, 5451751738944, ...; %e A082170 68999174203, 14734002979456, 624245820664563, ...; %e A082170 Antidiagonals begin as: %e A082170 1; %e A082170 1, 1; %e A082170 1, 8, 15; %e A082170 1, 27, 368, 1024; %e A082170 1, 64, 2727, 53672, 198581; %e A082170 1, 125, 11904, 710532, 18417792, 85102056; %e A082170 1, 216, 38375, 4975936, 386023509, 12448430408, 68999174203; %t A082170 T[0, _] = 1; T[n_, k_]:= T[n, k] = Sum[Binomial[n, i] (-1)^(n-i-1)*(i + k)^(3n-3i) T[i, k], {i,0,n-1}]; %t A082170 Table[T[n-k-1, k], {n, 1, 9}, {k, n-1, 1, -1}]//Flatten (* _Jean-François Alcover_, Aug 29 2019 *) %o A082170 (Magma) %o A082170 function A(n,k) %o A082170 if n eq 0 then return 1; %o A082170 else return (&+[(-1)^(n-j+1)*Binomial(n,j)*(k+j)^(3*n-3*j)*A(j,k): j in [0..n-1]]); %o A082170 end if; %o A082170 end function; %o A082170 A082170:= func< n,k | A(k,n-k+1) >; %o A082170 [A082170(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 19 2024 %o A082170 (SageMath) %o A082170 @CachedFunction %o A082170 def A(n,k): %o A082170 if n==0: return 1 %o A082170 else: return sum((-1)^(n-j+1)*binomial(n,j)*(k+j)^(3*n-3*j)*A(j,k) for j in range(n)) %o A082170 def A082170(n,k): return A(k,n-k+1) %o A082170 flatten([[A082170(n,k) for k in range(n+1)] for n in range(12)]) # _G. C. Greubel_, Jan 19 2024 %Y A082170 Cf. A082158, A082162, A082169. %K A082170 easy,nonn,tabl %O A082170 0,5 %A A082170 _Valery A. Liskovets_, Apr 09 2003