cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082182 Numbers k such that (5^k - 2^k)/3 is prime.

This page as a plain text file.
%I A082182 #45 Dec 20 2023 10:00:11
%S A082182 2,5,7,13,19,37,59,67,79,307,331,599,1301,12263,12589,18443,20149,
%T A082182 27983,281807,656657,795829,832151
%N A082182 Numbers k such that (5^k - 2^k)/3 is prime.
%C A082182 No other terms less than 100000. - _Robert Price_, Apr 06 2012
%C A082182 All terms are primes. Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - _Hugo Pfoertner_, Nov 14 2019
%C A082182 No other terms less than 1000000. - _Jon Grantham_, Jul 29 2023
%H A082182 OEIS Wiki, <a href="http://oeis.org/wiki/Primes_of_the_form_(a%5En%2Bb%5En)/(a%2Bb)_and_(a%5En-b%5En)/(a-b)">Primes of the form (a^n+b^n)/(a+b) and (a^n-b^n)/(a-b)</a>.
%H A082182 Jon Grantham and Andrew Granville, <a href="https://arxiv.org/abs/2307.07894">Fibonacci primes, primes of the form 2^n-k and beyond</a>, arXiv:2307.07894 [math.NT], 2023.
%e A082182 a(1)=2 because (5^2 - 2^2)/3 = (25 - 4)/3 = 7 is a prime.
%o A082182 (PARI) forprime(p=2,1e4,if(ispseudoprime((5^p-2^p)/3),print1(p", "))) \\ _Charles R Greathouse IV_, Jul 16 2011
%K A082182 more,nonn
%O A082182 1,1
%A A082182 _Hugo Pfoertner_, May 22 2003, Jun 23 2003
%E A082182 a(17) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 03 2007
%E A082182 a(18) from _David Radcliffe_, May 28 2007
%E A082182 a(19)-a(22) from _Jon Grantham_, Jul 29 2023