This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082232 #23 May 22 2025 10:21:35 %S A082232 1,2,3,4,5,6,7,8,9,111,171,222,252,333,414,444,555,666,777,828,888, %T A082232 999,2112,2772,2992,4224,4554,4774,6336,6556,8118,8338,8448,10101, %U A082232 10701,10901,11511,12321,13131,15751,18981,19791,20202,20502,20702,21012,21112 %N A082232 Palindromes divisible by their digit sum. %D A082232 P. J. Costello, More Palindromic Niven Numbers, Journal of Recreational Mathematics, vol. 33:1 pp. 18-21 2004-5 Baywood Amityville NY. %D A082232 W. McDaniel, Palindromic Niven Numbers, Journal of Recreational Mathematics, vol. 24 pp. 164-6 1992 Baywood Amityville NY. %H A082232 Chai Wah Wu, <a href="/A082232/b082232.txt">Table of n, a(n) for n = 1..10000</a> %p A082232 dmax:= 6; # to get all terms with at most dmax digits %p A082232 f1:= proc(n) %p A082232 local L, Ln, i,r,s,p; %p A082232 L:= convert(n, base, 10); %p A082232 Ln:= nops(L); %p A082232 r:= add(L[i]*10^(Ln-i), i=1..Ln); %p A082232 s:= convert(L,`+`); %p A082232 p:= 10^Ln*n+r; %p A082232 if p mod (2*s) = 0 then p else NULL fi; %p A082232 end proc: %p A082232 f2:= proc(n,d) %p A082232 local L, Ln, i,r,s,p; %p A082232 L:= convert(n, base, 10); %p A082232 Ln:= nops(L); %p A082232 r:= add(L[i]*10^(Ln-i), i=1..Ln); %p A082232 s:= convert(L,`+`); %p A082232 p:= 10^(1+Ln)*n+10^Ln*d+r; %p A082232 if p mod(2*s+d) = 0 then p else NULL fi; %p A082232 end proc: %p A082232 A:= {$1..9}: %p A082232 for d from 2 to dmax do %p A082232 if d::even then %p A082232 A:= A union {seq(f1(x),x=10^(d/2-1) .. 10^(d/2)-1)} %p A082232 else %p A082232 A:= A union {seq(seq(f2(x,y),x=10^((d-1)/2-1) .. 10^((d-1)/2)-1),y=0..9)} %p A082232 fi %p A082232 od: %p A082232 A; # _Robert Israel_, Aug 22 2014 %t A082232 d[n_] := IntegerDigits[n]; Select[Range[20800], Reverse[x = d[#]] == x && Divisible[#, Plus @@ d[#]] &] (* _Jayanta Basu_, Jul 13 2013 *) %o A082232 (Python) %o A082232 A082232 = sorted([int(str(x)+str(x)[::-1]) for x in range(1,10**5) if not %o A082232 int(str(x)+str(x)[::-1]) % sum((int(d) for d in str(x)+str(x)[::-1]))] %o A082232 + [int(str(x)+str(x)[-2::-1]) for x in range(1,10**5) if not %o A082232 int(str(x)+str(x)[-2::-1]) % sum((int(d) for d in str(x)+str(x)[-2::-1]))]) # _Chai Wah Wu_, Aug 22 2014 %o A082232 (PARI) %o A082232 rev(n)=r="";d=digits(n);for(i=1,#d,r=concat(Str(d[i]),r));eval(r) %o A082232 for(n=1,10^5,if(rev(n)==n,if(n%sumdigits(n)==0,print1(n,", ")))) \\ _Derek Orr_, Aug 25 2014 %K A082232 base,nonn %O A082232 1,2 %A A082232 _Amarnath Murthy_, Apr 09 2003 %E A082232 Corrected and extended by _Giovanni Resta_, Feb 08 2006 %E A082232 More terms from _Chai Wah Wu_, Aug 22 2014