This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082266 #11 Jun 16 2016 23:27:23 %S A082266 1,2,11,3,111,4,22,121,1111,5,131,212,11111,6,33,141,222,1221,2112, %T A082266 11211,111111,7,151,232,313,11311,12121,21112,1111111,8,44,161,242, %U A082266 323,1331,2222,3113,11411,12221,21212,112211,121121,211112,1112111,11111111 %N A082266 In the array shown below the n-th row contains all the palindromes that use digits > 0 and have a digit sum of n. The sequence contains the array read by rows. %F A082266 For formulas see A082267. %e A082266 In the following array the n-th row contains all the palindromes that use digits > 0 and have a digit sum of n. %e A082266 1 %e A082266 2 11 %e A082266 3 111 %e A082266 4 22 121 1111 %e A082266 5 131 212 11111 %e A082266 6 33 141 222 1221 2112 111111 %e A082266 ... %e A082266 The sequence contains the array read by rows. %p A082266 isPali := proc(perm) local i ; for i from 1 to nops(perm)/2 do if op(i,perm) <> op(-i,perm) then RETURN(false) ; fi ; od ; RETURN(true) ; end: isSingDig := proc(perm) local i ; for i from 1 to nops(perm) do if op(i,perm)>9 then RETURN(false) ; fi ; od ; RETURN(true) ; end: A082266 := proc(n) local arow,npart,pindx,part,perm,i,cand,j,pali ; arow := [] ; npart := combinat[partition](n) ; for pindx from 1 to nops(npart) do part := op(pindx,npart) ; perm := combinat[permute](part) ; for i from 1 to nops(perm) do cand := op(i,perm) ; if isSingDig(cand) and isPali(cand) then pali := add( op(j,cand)*10^(j-1),j=1..nops(cand) ) ; arow := [op(arow),pali] ; fi ; od ; od ; RETURN(sort(arow)) ; end: for n from 1 to 10 do arow := A082266(n) : for i from 1 to nops(arow) do printf("%d,",op(i,arow)) ; od : od : # _R. J. Mathar_, Mar 07 2007 %Y A082266 Cf. A082264, A082265, A082267. %K A082266 base,nonn,tabf %O A082266 1,2 %A A082266 _Amarnath Murthy_, Apr 12 2003 %E A082266 Corrected and extended by _R. J. Mathar_, Mar 07 2007