cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082277 Smallest prime that is the sum of prime(n) consecutive primes.

This page as a plain text file.
%I A082277 #20 Aug 11 2021 11:00:54
%S A082277 5,23,53,197,233,691,499,857,1151,2099,2399,2909,3821,4217,5107,6079,
%T A082277 10091,8273,12281,11597,12713,15527,22741,26041,25759,37447,28087,
%U A082277 36607,36067,35527,42463,46181,49279,65033,67271,71011,71167,76099,78139,96001,95107
%N A082277 Smallest prime that is the sum of prime(n) consecutive primes.
%F A082277 Sum of reciprocals converges to 0.28053...
%F A082277 a(n) = A070281(prime(n)). - _Michel Marcus_, Aug 07 2021
%e A082277 For prime(2) = 3,
%e A082277 2+3+5   = 10,
%e A082277 3+5+7   = 15,
%e A082277 5+7+11  = 23,
%e A082277 7+11+13 = 31.
%e A082277 So a(2) = 23, the first prime that is the sum of 3 consecutive primes.
%o A082277 (PARI)
%o A082277 \\ First prime in the sum of a prime number of consecutive primes
%o A082277 upto(n) = { sr=.2; print1(5", "); forprime(i=2,n, s=0; for(j=1,i, s+=prime(j); ); for(x=1,n, s = s - prime(x)+ prime(x+i); if(isprime(s),sr+=1.0/s; print1(s", "); break); ); ); /* print(); print(sr)*/}
%o A082277 (Python)
%o A082277 from sympy import isprime, nextprime, prime, primerange
%o A082277 def a(n):
%o A082277   pn = prime(prime(n))
%o A082277   smallest = list(primerange(2, pn+1))
%o A082277   while not isprime(sum(smallest)):
%o A082277     pn = nextprime(pn)
%o A082277     smallest = smallest[1:] + [pn]
%o A082277   return sum(smallest)
%o A082277 print([a(n) for n in range(1, 42)]) # _Michael S. Branicky_, May 23 2021
%Y A082277 Cf. A070281.
%K A082277 easy,nonn
%O A082277 1,1
%A A082277 _Cino Hilliard_, May 09 2003