This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A082293 #28 Feb 24 2025 14:37:11 %S A082293 4,8,9,12,18,20,24,25,27,28,40,44,45,49,50,52,54,56,60,63,68,75,76,84, %T A082293 88,90,92,98,99,104,116,117,120,121,124,125,126,132,135,136,140,147, %U A082293 148,150,152,153,156,164,168,169,171,172,175,184,188,189,198,204,207,212 %N A082293 Numbers having exactly one square divisor > 1. %C A082293 Numbers of the form m*p^2, p prime and m squarefree (A005117). [Corrected by _Peter Munn_, Nov 17 2020] %C A082293 The asymptotic density of this sequence is (6/Pi^2)*Sum_{n>=1} 1/prime(n)^2 = 0.274933... (A222056). - _Amiram Eldar_, Jul 07 2020 %H A082293 Amiram Eldar, <a href="/A082293/b082293.txt">Table of n, a(n) for n = 1..10000</a> %F A082293 A046951(a(n)) = 2. %t A082293 Select[Range[2, 200], MemberQ[{2, 3}, (e = Sort[FactorInteger[#][[;; , 2]]])[[-1]]] && (Length[e] == 1 || e[[-2]] == 1) &] (* _Amiram Eldar_, Jul 07 2020 *) %o A082293 (PARI) is(n)=my(f=vecsort(factor(n)[,2],,4)); #f && f[1]>1 && f[1]<4 && (#f==1 || f[2]==1) \\ _Charles R Greathouse IV_, Oct 16 2015 %o A082293 (Python) %o A082293 from math import isqrt %o A082293 from sympy import mobius, primerange %o A082293 def A082293(n): %o A082293 def bisection(f,kmin=0,kmax=1): %o A082293 while f(kmax) > kmax: kmax <<= 1 %o A082293 kmin = kmax >> 1 %o A082293 while kmax-kmin > 1: %o A082293 kmid = kmax+kmin>>1 %o A082293 if f(kmid) <= kmid: %o A082293 kmax = kmid %o A082293 else: %o A082293 kmin = kmid %o A082293 return kmax %o A082293 def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) %o A082293 def f(x): return int(n+x-sum(g(x//p**2) for p in primerange(isqrt(x)+1))) %o A082293 return bisection(f,n,n) # _Chai Wah Wu_, Feb 24 2025 %Y A082293 Cf. A005117, A046951, A222056. %Y A082293 Complement of A048111 within A013929. %Y A082293 Subsequence of A252849. %Y A082293 Disjoint union of A048109 and A060687. %Y A082293 A285508 is a subsequence. %K A082293 nonn %O A082293 1,1 %A A082293 _Reinhard Zumkeller_, Apr 08 2003